MTR variations in normal adult brain structures using balanced steady-state free precession.

Neuroradiology

Department of Neuroradiology, Institute of Radiology, University of Basel Hospital, Petersgraben 4, 4031 Basel, Switzerland.

Published: March 2011

Introduction: Magnetization transfer (MT) is sensitive to the macromolecular environment of water protons and thereby provides information not obtainable from conventional magnetic resonance imaging (MRI). Compared to standard methods, MT-sensitized balanced steady-state free precession (bSSFP) offers high-resolution images with significantly reduced acquisition times. In this study, high-resolution magnetization transfer ratio (MTR) images from normal appearing brain structures were acquired with bSSFP.

Methods: Twelve subjects were studied on a 1.5 T scanner. MTR values were calculated from MT images acquired in 3D with 1.3 mm isotropic resolution. The complete MT data set was acquired within less than 3.5 min. Forty-one brain structures of the white matter (WM) and gray matter (GM) were identified for each subject.

Results: MTR values were higher for WM than GM. In general, MTR values of the WM and GM structures were in good accordance with the literature. However, MTR values showed more homogenous values within WM and GM structures than previous studies.

Conclusions: MT-sensitized bSSFP provides isotropic high-resolution MTR images and hereby allows assessment of reliable MTR data in also very small brain structures in clinically feasible acquisition times and is thus a promising sequence for being widely used in the clinical routine. The present normative data can serve as a reference for the future characterization of brain pathologies.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00234-010-0714-5DOI Listing

Publication Analysis

Top Keywords

brain structures
16
mtr values
16
mtr
8
balanced steady-state
8
steady-state free
8
free precession
8
magnetization transfer
8
acquisition times
8
mtr images
8
values structures
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!