Objectives: The aim of this study was to evaluate the feasibility of 2 established magnetic resonance imaging based techniques to quantify intrahepatic lipids (IHL) within a study population of extremely obese patients by means of a short, wide-bore MR scanner. Fat-selective imaging using a spectral-spatial excitation technique and in-phase/opposed-phase (IN/OP) gradient echo imaging were applied and results were compared. Results for IN/OP technique were corrected for T1- and T2*- relaxation effects. Furthermore, image quality was assessed for both techniques. Differences in regional fat distribution were assessed using parameter maps of voxel-wise calculated IHL.
Materials And Methods: MR examinations of 20 extremely obese patients were included in the study (7 males, 13 females; mean age 40.4 +/- 12.6 years; mean body mass index 46.3 +/- 6.6 kg/m2). IHL, in terms of fat signal fractions, was calculated from simultaneously acquired IN/OP-images using a double-echo gradient echo technique. For correction of transverse relaxation effects an additional multiecho gradient echo sequence was applied in each subject, whereas correction of longitudinal relaxation was performed using literature values for T1 of water and lipid protons in the liver parenchyma. A highly selective spectral-spatial excitation technique with 6 binomial radiofrequency pulses was used for fat-selective imaging. In this case, signal intensity of adjacent subcutaneous adipose (approximately 100% fat) was used as an internal reference for IHL quantification.
Results: IN/OP-imaging provided sufficient image quality in all subjects, whereas fat-selective imaging was hampered by insufficient homogeneity of the static magnetic field in 1 of 20 subjects. Hepatic T2* values ranged from 20.1 milliseconds to 42.2 milliseconds. Results for IHL from both techniques were highly correlated with r(s) = 0.915 (P < 0.0001). Mean values for IHL were 16.5% +/- 9.2% and 10.6% +/- 7.3%, for IN/OP and spectral-spatial excitation technique, respectively, showing a slightly lower estimation of IHL by the spectral-spatial excitation method. In the examined cohort of extremely obese subjects a relatively high number of 4 out of 20 cases (20%) were found with uneven distribution of IHLs.
Conclusions: The presented data confirm that both methods are reliable tools for quantification of IHL, if inherent drawbacks and limitations are taken into account. Inhomogeneity of the static magnetic field observed in examinations of extremely obese patients limits the use of spectral-spatial excitation, if performed without time-consuming shimming procedures. Necessity to correct for transverse and longitudinal relaxation effects using the IN/OP method requires additional measurements and postprocessing procedures, which might hamper the clinical applicability. Moreover, significant regional differences in IHL may exist in some patients especially if pronounced hepatic steatosis is present.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/RLI.0b013e3181df2afb | DOI Listing |
J Cardiovasc Magn Reson
December 2024
Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark.
Background: Hyperpolarized [1-C]pyruvate cardiovascular magnetic resonance imaging (HP [1-C]pyruvate CMR) visualizes key steps in myocardial metabolism. The present study aimed to examine patients with heart failure (HF) using HP [1-C]pyruvate CMR.
Methods: A cross-sectional study of patients with HF and healthy controls using HP [1-C]pyruvate CMR.
Magn Reson Med
August 2024
Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri, USA.
Purpose: To develop a flexible, vendor-neutral EPI sequence for hyperpolarized C metabolic imaging.
Methods: An open-source EPI sequence consisting of a metabolite-specific spectral-spatial RF excitation pulse and a customizable EPI readout was created using the Pulseq framework. To explore the flexibility of our sequence, we tested several versions of the sequence including a symmetric 3D readout with different spatial resolutions for each metabolite (1.
Magn Reson Med
September 2024
Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Purpose: To investigate the feasibility of downfield MR spectroscopic imaging (DF-MRSI) in the human brain at 7T.
Methods: A 7T DF-MRSI pulse sequence was implemented based on the previously described methodology at 3T, with 3D phase-encoding, spectral-spatial excitation, and frequency selective refocusing. Data were pre-processed followed by analysis using the "LCModel" software package, and metabolite maps created from the LCModel results.
MAGMA
April 2024
Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
Objective: To compensate subject-specific field inhomogeneities and enhance fat pre-saturation with a fast online individual spectral-spatial (SPSP) single-channel pulse design.
Methods: The RF shape is calculated online using subject-specific field maps and a predefined excitation k-space trajectory. Calculation acceleration options are explored to increase clinical viability.
Photoacoustics
December 2023
Nanjing University of Science and Technology, School of Electronic and Optical Engineering, Smart Computational Imaging Laboratory (SCILab), Nanjing 210094, China.
Photoacoustic dermoscopy (PAD) is an emerging non-invasive imaging technology aids in the diagnosis of dermatological conditions by obtaining optical absorption information of skin tissues. Despite advances in PAD, it remains unclear how to obtain quantitative accuracy of the reconstructed PAD images according to the optical and acoustic properties of multilayered skin, the wavelength and distribution of excitation light, and the detection performance of ultrasound transducers. In this work, a computing method of four-dimensional (4D) spectral-spatial imaging for PAD is developed to enable quantitative analysis and optimization of structural and functional imaging of skin.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!