Allele-specific suppressors of lin-1(R175Opal) identify functions of MOC-3 and DPH-3 in tRNA modification complexes in Caenorhabditis elegans.

Genetics

Howard Hughes Medical Institute and Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309, USA.

Published: August 2010

The elongator (ELP) complex consisting of Elp1-6p has been indicated to play roles in multiple cellular processes. In yeast, the ELP complex has been shown to genetically interact with Uba4p/Urm1p and Kti11-13p for a function in tRNA modification. Through a Caenorhabditis elegans genetic suppressor screen and positional cloning, we discovered that loss-of-function mutations of moc-3 and dph-3, orthologs of the yeast UBA4 and KTI11, respectively, effectively suppress the Multivulva (Muv) phenotype of the lin-1(e1275, R175Opal) mutation. These mutations do not suppress the Muv phenotype caused by other lin-1 alleles or by gain-of-function alleles of ras or raf that act upstream of lin-1. The suppression can also be reverted by RNA interference of lin-1. Furthermore, we showed that dph-3(lf) also suppressed the defect of lin-1(e1275) in promoting the expression of a downstream target (egl-17). These results indicate that suppression by the moc-3 and dph-3 mutations is due to the elevated activity of lin-1(e1275) itself rather than the altered activity of a factor downstream of lin-1. We further showed that loss-of-function mutations of urm-1 and elpc-1-4, the worm counterparts of URM1 and ELP complex components in yeast, also suppressed lin-1(e1275). We also confirmed that moc-3(lf) and dph-3(lf) have defects in tRNA modifications as do the mutants of their yeast orthologs. These results, together with the observation of a likely readthrough product from a lin-1(e1275)::gfp fusion transgene indicate that the aberrant tRNA modification led to failed recognition of a premature stop codon in lin-1(e1275). Our genetic data suggest that the functional interaction of moc-3/urm-1 and dph-3 with the ELP complex is an evolutionarily conserved mechanism involved in tRNA functions that are important for accurate translation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2927752PMC
http://dx.doi.org/10.1534/genetics.110.118406DOI Listing

Publication Analysis

Top Keywords

elp complex
16
moc-3 dph-3
12
trna modification
12
caenorhabditis elegans
8
loss-of-function mutations
8
muv phenotype
8
trna
5
lin-1e1275
5
allele-specific suppressors
4
suppressors lin-1r175opal
4

Similar Publications

Circular dichroism (CD) spectroscopy has emerged as a potent tool for probing chiral small-molecule ligand exchange on natively achiral quantum dots (QDs). In this study, we report a novel approach to identifying QD-biomolecule interactions by inducing chirality in CdS QDs using thermoresponsive elastin-like polypeptides (ELPs) engineered with C-terminal cysteine residues. Our method is based on a versatile two-step ligand exchange process starting from monodisperse oleate-capped QDs in nonpolar media and proceeding through an easily accessed achiral glycine-capped QD intermediate.

View Article and Find Full Text PDF
Article Synopsis
  • - Sensory capabilities are essential for cellular interaction, leading to the development of sensory globular protein vesicles (GPVs) made from recombinant fusion proteins that self-assemble in water.
  • - GPVs functionally interact with the signaling molecule rapamycin to form a FKBP-FRB ternary complex, which incorporates a genetically fused fluorescent protein and leucine zipper for vesicle assembly.
  • - The study reveals that GPVs can aggregate in response to rapamycin in a time- and concentration-dependent way, providing insights into their potential use as models for mimicking key cellular processes in synthetic biology.
View Article and Find Full Text PDF

Utilization of Three-Dimensional Electron Diffraction for Structure Determination of Extra-Large-Pore Zeolites.

Small Methods

November 2024

State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.

The development of extra-large-pore (ELP) zeolites is crucial for industries of petrochemical catalysis, notably in processes like diesel cracking and hydrocracking of multi-carbon hydrocarbon substrates. The catalytic performance and selectivity of these zeolites depend heavily on their specific porous structures, making precise structure determination highly essential for understanding their properties and functionalities. However, the complex structures of ELP zeolites pose significant challenges for characterization.

View Article and Find Full Text PDF

The field of engineering living materials (ELMs) seeks to engineer cells to form macroscopic materials with tailorable structures and properties. While the rheological properties of ELMs have been altered using synthetic biology methodology, the relationships connecting their sequence, structural, and rheological properties remain to be elucidated. Recently, our lab created centimeter-scale ELMs from that offer a platform to investigate this paradigm.

View Article and Find Full Text PDF

Metallothionein (MT) plays a significant role in heavy metal removal, antioxidant defense, and immune regulation. The current predominant approach for obtaining natural MT is extraction from tissue, which often entails complex procedures resulting in limited yields. In recent years, researchers have adopted the strategy of fusing labels such as GST or His for the heterologous expression of MT.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!