The purpose of this study was to investigate the role of the mutant CUGn RNA in the induction of stress in type 1 myotonic dystrophy (DM1) cells and in the stress-mediated inhibition of protein translation in DM1. To achieve our goals, we performed HPLC-based purification of stress granules (SGs), immunoanalysis of SGs with stress markers TIA-1, CUGBP1, and ph-eIF2, site-specific mutagenesis, and examinations of RNA-protein and protein-protein interactions in myoblasts from control and DM1 patients. The cause-and-effect relationships were addressed in stable cells expressing mutant CUG repeats. We found that the mutant CUGn RNA induces formation of SGs through the increase of the double-stranded RNA-dependent protein kinase (PKR) and following inactivation of eIF2α, one of the substrates of PKR. We show that SGs trap mRNA coding for the DNA repair and remodeling factor MRG15 (MORF4L1), translation of which is regulated by CUGBP1. As the result of the trapping, the levels of MRG15 are reduced in DM1 cells and in CUG-expressing cells. These data show that CUG repeats cause stress in DM1 through the PKR-ph-eIF2α pathway inhibiting translation of certain mRNAs, such as MRG15 mRNA. The repression of protein translation by stress might contribute to the progressive muscle loss in DM1.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2996918 | PMC |
http://dx.doi.org/10.1096/fj.09-151159 | DOI Listing |
Bioessays
December 2024
CHU Sainte-Justine Research Center, Montreal, Quebec, Canada.
Myotonic dystrophy type 1 (DM1) is considered a progeroid disease (i.e., causing premature aging).
View Article and Find Full Text PDFCancer Chemother Pharmacol
December 2024
Departments of Pharmacology, Medicine Faculty, Sivas Cumhuriyet University, Sivas, Türkiye.
Purpose: Human epidermal growth factor-2 (HER-2) targeted drugs are used in only HER-2 overexpressed cancers. However, only a small portion of these cancer types are HER-2 overexpressed. In this study, we aimed to upregulate HER-2 receptors in MCF-7 breast cancer and HT-29 colon cancer cell cultures, which these cells are not HER-2 upregulated in natural status.
View Article and Find Full Text PDFCurr Stem Cell Res Ther
December 2024
Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
Background: Skeletal muscle atrophy in myotonic dystrophy type 1 (DM1) is caused by abnormal skeletal muscle satellite cell (SSC) proliferation due to increased glycolysis, which impairs muscle regeneration. In DM1, RNA foci sequester muscleblind-like protein 1 (MBNL1) in the nucleus, inhibiting its role in regulating SSC proliferation. Aerobic training reduces glycolysis and increases SSC proliferation and muscle fiber volume.
View Article and Find Full Text PDFCells
November 2024
Cellular Oncology Group, Biogipuzkoa Health Research Institute, Paseo Dr. Beguiristain s/n, 20014 San Sebastian, Spain.
Myotonic dystrophy type 1 (DM1) is an autosomal dominant disorder clinically characterized by progressive muscular weakness and multisystem degeneration, which correlates with the size of CTG expansion and MBLN decrease. These changes induce a calcium and redox homeostasis imbalance in several models that recapitulate the features of premature tissue aging. In this study, we characterized the impact of a new family of FKBP12 ligands (generically named MPs or MP compounds) designed to stabilize FKBP12 binding to the ryanodine receptors and normalize calcium dysregulation under oxidative stress.
View Article and Find Full Text PDFHum Mol Genet
December 2024
Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan.
Myotonic dystrophy type 1 (DM1) is a dominantly inherited multi-system disease caused by expanded CTG repeats in the 3' untranslated region of the dystrophia myotonica protein kinase (DMPK) gene. Similar to other repeat disorders, the expanded trinucleotide repeat is unstable and demonstrates a tendency to increase repeat size with age in affected tissues. DNA mismatch repair system is implicated in somatic instability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!