The virtual physiological human (VPH) initiative encompasses a wide range of activities, including structural and functional imaging, data mining, knowledge discovery tool and database development, biomedical modelling, simulation and visualization. The VPH community is developing from a multitude of relatively focused, but disparate, research endeavours into an integrated effort to bring together, develop and translate emerging technologies for application, from academia to industry and medicine. This process initially builds on the evolution of multi-disciplinary interactions and abilities, but addressing the challenges associated with the implementation of the VPH will require, in the very near future, a translation of quantitative changes into a new quality of highly trained multi-disciplinary personnel. Current strategies for undergraduate and on-the-job training may soon prove insufficient for this. The European Commission seventh framework VPH network of excellence is exploring this emerging need, and is developing a framework of novel training initiatives to address the predicted shortfall in suitably skilled VPH-aware professionals. This paper reports first steps in the implementation of a coherent VPH training portfolio.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1098/rsta.2010.0082 | DOI Listing |
Am J Biol Anthropol
January 2025
College of Population Health, University of New Mexico, Health Sciences Center, Albuquerque, New Mexico, USA.
Objectives: Skeletal indicators of developmental stress are commonly used to assess health, disease, and patterns of morbidity and mortality in past populations. Incorporating information about individual life history, such as adverse life events, allows for a more thorough understanding of their etiology. This paper adopts the double lens of ontogeny and the life course to analyze indicators of developmental stress in relation to known individual pathologies and developmental patterns of the cranium, vertebrae, and long bones.
View Article and Find Full Text PDFBiophys Chem
December 2024
Tecnologico de Monterrey, The Institute for Obesity Research, Unit of Experimental Medicine, Monterrey, NL 64849, Mexico. Electronic address:
The cannabinoid receptor 1 (CB1) is an essential component of the endocannabinoid system, responsible for regulating various physiological processes such as pain, mood, and appetite. Despite increasing interest in the therapeutic potential of CB1 modulators, the precise mechanisms by which small molecules modulate receptor activity-particularly without fully transitioning between active and inactive states-remain partially understood. In this study, the complexity of CB1-ligand interactions was evaluated for the inactive CB1 state.
View Article and Find Full Text PDFG protein-coupled receptors (GPCRs) remain a focal point of research due to their critical roles in cell signaling and their prominence as drug targets. However, directly linking drug efficacy to receptor-mediated activation of specific intracellular transducers and the resulting physiological outcomes remains challenging. It is unclear whether the enhanced therapeutic window of certain drugs - defined as the dose range that provides effective therapy with minimal side effects - stems from their low intrinsic efficacy across all signaling pathways or ligand bias, wherein specific transducer subtypes are preferentially activated in a given cellular system compared to a reference ligand.
View Article and Find Full Text PDFMol Divers
December 2024
Institute of Physiologically Active Compounds Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, 142432, Russia.
Histone deacetylase 3 (HDAC3) inhibitors keep significant therapeutic promise for treating oncological, neurodegenerative, and inflammatory diseases. In this work, we developed robust QSAR regression models for HDAC3 inhibitory activity and acute toxicity (LD, intravenous administration in mice). A total of 1751 compounds were curated for HDAC3 activity, and 15,068 for toxicity.
View Article and Find Full Text PDFInt J Psychophysiol
December 2024
Department of Psychiatry, University Medical Centre, Utrecht, the Netherlands; Brain Research and Innovation Centre, Ministry of Defence, Utrecht, the Netherlands.
Military personnel often encounter situations that can trigger acute stress, which may affect operational performance. Therefore, it is important to examine stress responses in controlled environments to obtain more insights in performance-influencing effects of acute stress. This study investigated the impact of passive heat exposure combined with virtual combat scenarios on cardiovascular and psychophysiological parameters in a controlled setting.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!