Puma (p53 up-regulated modulator of apoptosis) is a BH3-only protein member of the Bcl-2 family that controls apoptosis by regulating the release of pro-apoptotic factors from mitochondria. Previously, we reported that sodium arsenite (NaAsO(2)) induces Puma-dependent apoptosis in cortical neurons in a p53-independent manner. The following evidence shows that p53-independent Puma activation by NaAsO(2) is mediated by the p53-related protein TAp73: (i) NaAsO(2) causes TAp73alpha accumulation and increases p53-independent expression of p73 target genes; (ii) two p53 response elements in the Puma promoter are required for NaAsO(2)-mediated activation of a Puma reporter construct; (iii) expression of the inhibitory DeltaNp73alpha and DeltaNp73beta isoforms decreases NaAsO(2)-mediated induction of Puma and other p53-family target genes in a p53-null background; (iv) DeltaNp73alpha and DeltaNp73beta expression protects the neurons from NaAsO(2)-dependent apoptosis. Interestingly, although ER stressors also induce p53-independent, Puma-dependent apoptosis, they do not increase TAp73 expression while NaAsO(2) does not induce notable endoplasmic reticulum (ER) stress. In contrast, DNA damaging agents, okadaic acid, and H(2)O(2) all induce apoptosis in a strictly Puma- and p53-dependent manner. Hence, the pivotal position of Puma as mediator of apoptosis in cortical neurons is because of the availability of at least three independent signalling pathways that ensure its activation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2956137PMC
http://dx.doi.org/10.1111/j.1471-4159.2010.06804.xDOI Listing

Publication Analysis

Top Keywords

puma-dependent apoptosis
12
cortical neurons
12
apoptosis
8
apoptosis cortical
8
target genes
8
deltanp73alpha deltanp73beta
8
puma
7
p53-independent
5
implication tap73
4
tap73 p53-independent
4

Similar Publications

[Synergistic effect of azacitidine with homoharringtonine by activating the c-MYC/DDIT3/PUMA axis in acute myeloid leukemia].

Zhonghua Xue Ye Xue Za Zhi

December 2023

Department of Hematology, Zhongda Hospital, School of Medicine, Southeast University, Institute of Hematology Southeast University, Nanjing 210009, China.

This study aimed to explore the synergistic effect and underlying mechanism of azacitidine (AZA) in combination with homoharringtonine (HHT) in acute myeloid leukemia (AML) . The synergistic effects of AZA and HHT were examined by cell proliferation, apoptosis, and colony formation assays. The synergistic effects were calculated using the combination index (CI) , and the underlying mechanisms were explored using RNA sequencing, pathway inhibitors, and gene knockdown approaches.

View Article and Find Full Text PDF

Synthetic lethality is a powerful approach for targeting oncogenic drivers in cancer. Recent studies revealed that cancer cells with microsatellite instability (MSI) require Werner (WRN) helicase for survival; however, the underlying mechanism remains unclear. In this study, we found that WRN depletion strongly induced p53 and its downstream apoptotic target PUMA in MSI colorectal cancer (CRC) cells.

View Article and Find Full Text PDF

Breast cancer is the most common malignancy in women worldwide, and the discovery of new effective breast cancer therapies with lower toxicity is still needed. We screened a series of chalcone derivatives and found that MY11 ((E)-1-(2-hydroxy-4,6-dimethoxyphenyl)-3-(4-piperazinylphenyl) prop-2-en-1-one) had the strongest anti-breast cancer activity. MY11 inhibited the growth of MDA-MB-231 and MCF-7 breast cancer cells by arresting the cell cycle and promoting apoptosis, through regulation of the cell cycle and apoptosis-related proteins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!