Comparative research suggests that yawning is a thermoregulatory behavior in homeotherms. Our previous experiments revealed that yawning increased in budgerigars (Melopsittacus undulatus) as ambient temperature was raised toward body temperature (22-->34 degrees C). In this study, we identify the range of temperatures that triggers yawning to rule out the possible effect of changing temperature in any range. To corroborate its thermoregulatory function, we also related the incidence of yawning to other avian thermoregulatory behaviors in budgerigars (e.g., panting, wing venting). In a repeated measures design, 16 budgerigars were exposed to 4 separate 10-min periods of changing temperatures: (a) low-increasing (23-->27 degrees C), (b) high-increasing (27-->33 degrees C), (c) high-decreasing (34-->28 degrees C), and (d) low-decreasing (28-->24 degrees C). Birds yawned significantly more during the high-increasing temperature range, and yawning was positively correlated with ambient temperature across trials. Yawning was also positively correlated with other thermoregulatory behaviors. This research clarifies the previously demonstrated relationship between yawning rate and temperature by providing evidence that the physiological trigger for yawning is related to increasing body temperatures rather than the detection of changing external temperatures.

Download full-text PDF

Source
http://dx.doi.org/10.1037/a0018006DOI Listing

Publication Analysis

Top Keywords

ambient temperature
12
yawning
9
budgerigars melopsittacus
8
melopsittacus undulatus
8
temperature range
8
thermoregulatory behaviors
8
yawning positively
8
positively correlated
8
temperature
7
degrees
5

Similar Publications

Unveiling of Hydrogen Spillover Mechanisms on Tungsten Oxide Surfaces.

J Am Chem Soc

January 2025

Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.

Hydrogen spillover is an important process in catalytic hydrogenation reactions, facilitating H activation and modulating surface chemistry of reducible oxide catalysts. This study focuses on the unveiling of platinum-induced hydrogen spillover on monoclinic tungsten trioxide (γ-WO), employing ambient pressure X-ray photoelectron spectroscopy, density functional theory calculations and microkinetic modeling to investigate the dynamic evolution of surface states at varied temperatures. At room temperature, hydrogen spillover results in the formation of W and hydrogen intermediates (hydroxyl species and adsorbed water), facilitated by Pt metal clusters.

View Article and Find Full Text PDF

Efficient thermal generation from solar/electric energy in transparent films remains challenging due to the limited toolbox of high-performance thermal generation materials and methods for microstructure engineering. Here, we proposed a two-step strategy to introduce hierarchical wrinkles to the MXene composite films with high transparency, leading to upgraded photo/electrothermal conversion efficiency. Specifically, the thin film contains protic acid-treated MXene layers assembled with Ag nanowires (H-MXene/Ag NWs).

View Article and Find Full Text PDF

Although significant progress has been made in the effective measurement of Zn(II), Аlizarin red S (ARS) was immobilized on polyethylene polyamine-modified polyacrylonitrile (PPF-1) via a new matrix. This approach allows the detection of low levels of Zn(II) ions in various water samples via preconcentrated atomic absorption spectrometry. The use of PPF-1 in a polymer matrix for zinc preconcentration presents several advantages over traditional sorbtion-spectroscopic methods, including reduced cost, high zinc recovery, increased sensitivity, and selectivity.

View Article and Find Full Text PDF

Necrophagous blow flies are a commonly used forensic tool to estimate the minimum postmortem interval (PMI), where researchers collect development data under constant temperature regimes and construct models to estimate PMI. However, the ambient temperatures of real death scenes are often fluctuant, which limits the reliability of data obtained under constant temperature regimes. Here we investigate the possible differences in the development of Chrysomya megacephala (Fabricius, 1794) (Diptera: Calliphoridae), an important species in forensic entomology.

View Article and Find Full Text PDF

Ectotherms are considered more susceptible to global warming. Variations in ambient temperature are especially alarming as the majority of animals are ectothermic, with temperature seen as a crucial determinant of their ecology, biogeography, behaviour, and physiology. Ectotherms, which depend on external ambient temperatures to regulate their body temperature, exhibit various physiological and metabolic responses to variations in temperature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!