Influence of particle-substrate interaction on localized plasmon resonances.

Nano Lett

CSIRO, Materials Science and Engineering and Future Manufacturing Flagship, Private Bag 33, Clayton, VIC 3168, Australia.

Published: June 2010

We present a theory for determining the localized surface plasmon resonance shifts of arbitrarily shaped metal nanoparticles on a substrate. Using a pseudoparticle concept, an expression for the particle-substrate interaction is derived, providing both physical insight and formulas to estimate the shifted plasmon resonance. The theory is verified against measured scattering spectra of nanorods on substrates. Simple formulas are provided to calculate the resonance of nanorods, spheres, and ellipsoids on dielectric substrate.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nl100423zDOI Listing

Publication Analysis

Top Keywords

particle-substrate interaction
8
plasmon resonance
8
influence particle-substrate
4
interaction localized
4
localized plasmon
4
plasmon resonances
4
resonances theory
4
theory determining
4
determining localized
4
localized surface
4

Similar Publications

Direct measurement of self-diffusiophoretic force generated by active colloids of different patch coverage using optical tweezers.

J Colloid Interface Sci

January 2025

Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology Madras, Chennai 600036, India; Centre for Soft and Biological Matter, Indian Institute of Technology Madras, Chennai 600036, India. Electronic address:

Hypothesis: Synthetic micro/nanomotors are gaining extensive attention for various biomedical applications (especially in drug delivery) due to their ability to mimic the motion of biological micro/nanoscale swimmers. The feasibility of these applications relies on tight control of propulsion speed, direction, and type of motion (translation, circular, etc.) along with the exerted self-propulsive force.

View Article and Find Full Text PDF

Response and resilience of carbon nanotube micropillars to shear flow.

Nanotechnology

August 2024

Department of Chemical and Biochemical Engineering, Western University, London, Ontario N6A 5B9, Canada.

Interactions between carbon nanotubes (CNTs) and fluid flows are central to the operation of several emerging nanotechnologies. In this paper, we explore the fluid-structure interaction of CNT micropillars in wall-bounded shear flows, relevant to recently developed microscale wall shear stress sensors. We monitor the deformation of CNT micropillars in channel flow as the flow rate and wall shear stress are gradually varied.

View Article and Find Full Text PDF

Cationic and anionic polyelectrolytes, poly(vinylbenzyl trimethylammonium chloride) (PVBTA) and poly(sodium styrene sulfate) (PSSS), were grafted on the surface of the silica particles, respectively, and then these two types of polyelectrolyte-grafted silica particles were applied to the colloidal layer preparation by convective self-assembly (CSA) using hydrophilic or hydrophobic glass substrates to investigate the effect of the interactions between the particles and the substrate surface on the resultant layer structures. When the PVBTA-grafted silica particle (PVBTA-Si) was used, the colloidal monolayers with a non-close-packed (NCP) structure were formed on both hydrophilic and hydrophobic glass substrates, where the NCP colloidal layers on the hydrophobic glass substrate have a somewhat more ordered structure than those on the hydrophilic glass substrate. In the case of the PSSS-grafted silica particle (PSSS-Si), on the other hand, stripe patterns with close-packed (CP) colloidal layers were obtained on both types of the glass substrates.

View Article and Find Full Text PDF

Polymer cold spray has gained considerable attention as a novel manufacturing process. A promising aspect of this technology involves the ability to deposit uniform polymer coatings without the requirements of solvent and/or high-temperature conditions. The present study investigates the interplay between shear instability, often considered to be the primary mechanism for bond formation, and fracture, as a secondary energy dissipation mechanism, collectively governing the deposition of glassy thermoplastics on similar and dissimilar substrates.

View Article and Find Full Text PDF

Three-dimensional close-to-substrate trajectories of magnetic microparticles in dynamically changing magnetic field landscapes.

Sci Rep

December 2022

Institute of Physics and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel, Heinrich-Plett-Strasse 40, 34132, Kassel, Germany.

The transport of magnetic particles (MPs) by dynamic magnetic field landscapes (MFLs) using magnetically patterned substrates is promising for the development of Lab-on-a-chip (LOC) systems. The inherent close-to-substrate MP motion is sensitive to changing particle-substrate interactions. Thus, the detection of a modified particle-substrate separation distance caused by surface binding of an analyte is expected to be a promising probe in analytics and diagnostics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!