Reductive metabolism of the dinitrobenzamide mustard anticancer prodrug PR-104 in mice.

Cancer Chemother Pharmacol

Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.

Published: March 2011

Purpose: PR-104, a bioreductive prodrug in clinical trial, is a phosphate ester which is rapidly metabolized to the corresponding alcohol PR-104A. This dinitrobenzamide mustard is activated by reduction to hydroxylamine (PR-104H) and amine (PR-104M) metabolites selectively in hypoxic cells, and also independently of hypoxia by aldo-keto reductase (AKR) 1C3 in some tumors. Here, we evaluate reductive metabolism of PR-104A in mice and its significance for host toxicity.

Methods: The pharmacokinetics of PR-104, PR-104A and its reduced metabolites were investigated in plasma and tissues of mice (with and without SiHa or H460 tumor xenografts) and effects of potential oxidoreductase inhibitors were evaluated.

Results: Pharmacokinetic studies identified extensive non-tumor reduction of PR-104A to the 5-amine PR-104H (identity of which was confirmed by chemical synthesis), especially in liver. However, high concentrations of PR-104H in tumors that suggested intra-tumor activation is also significant. The tissue distribution of PR-104M/H was broadly consistent with the target organ toxicities of PR-104 (bone marrow, intestines and liver). Surprisingly, hepatic nitroreduction was not enhanced when the liver was made more hypoxic by hepatic artery ligation or breathing of 10% oxygen. A screen of non-steroidal anti-inflammatory drugs identified naproxen as an effective AKR1C3 inhibitor in human tumor cell cultures and xenografts, suggesting its potential use to ameliorate PR-104 toxicity in patients. However, neither naproxen nor the pan-CYP inhibitor 1-aminobenzotriazole inhibited normal tissue reduction of PR-104A in mice.

Conclusions: PR-104 is extensively reduced in mouse tissues, apparently via oxygen-independent two-electron reduction, with a tissue distribution that broadly reflects toxicity.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00280-010-1354-5DOI Listing

Publication Analysis

Top Keywords

reductive metabolism
8
dinitrobenzamide mustard
8
reduction pr-104a
8
tissue distribution
8
pr-104
6
pr-104a
5
metabolism dinitrobenzamide
4
mustard anticancer
4
anticancer prodrug
4
prodrug pr-104
4

Similar Publications

Proteomic analysis of Trichoderma harzianum secretome and their role in the biosynthesis of zinc/iron oxide nanoparticles.

Sci Rep

January 2025

Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), Fundación para Investigaciones Biológicas Aplicadas (FIBA), Mar del Plata, 7600, Argentina.

The fungal green synthesis of nanoparticles (NPs) has gained great interest since it is a cost-effective and easy handling method. The process is simple because fungi secrete metabolites and proteins capable of reducing metal salts in aqueous solution, however the mechanism remains largely unknown. The aim of this study was to analyze the secretome of a Trichoderma harzianum strain during the mycobiosynthesis process of zinc and iron nanoparticles.

View Article and Find Full Text PDF

Background: We investigated chitosan's protective effects against tertiary butylhydroquinone (TBHQ)-induced toxicity in adult male rats, focusing on cognitive functions and oxidative stress in the brain, liver, and kidneys.

Methods: Rats were divided into four groups (n = 8/group): (1) Control, (2) Chitosan only, (3) TBHQ only, and (4) Chitosan + TBHQ.

Results: TBHQ exposure led to significant cognitive impairments and increased oxidative stress, marked by elevated malondialdehyde (MDA) and decreased superoxide dismutase (SOD) and glutathione (GSH) levels.

View Article and Find Full Text PDF

Background: HIV and tuberculosis (TB) co-infection poses a significant health challenge, particularly when involving the central nervous system (CNS), where it leads to severe morbidity and mortality. Current treatments face challenges such as drug resistance, immune reconstitution inflammatory syndrome (IRIS), and persistent inflammation. Glutathione (GSH) has the therapeutic potential to enhance treatment outcomes by improving antibiotic efficacy, reducing inflammation, and mitigating immune dysfunction.

View Article and Find Full Text PDF

The global burden of COVID-19 continues to rise, and despite significant progress in vaccine development, there remains a critical need for effective treatments for the severe inflammation and acute lung injury associated with SARS-CoV-2 infection. In this study, we explored the antiviral properties of a plant-derived complex consisting of flavonol and hydroxyorganic acid compounds. Our research focused on the ability of the flavonol and hydroxyorganic acid complex to suppress the activity of several key proteins involved in the replication and maturation of SARS-CoV-2.

View Article and Find Full Text PDF

is a perennial medicinal herb with important immunomodulatory and anti-inflammatory properties, especially purported for the alleviation of cold and flu symptoms. Different classes of secondary metabolites of the plant, such as alkylamides, caffeic acid derivatives, polysaccharides, flavonoids, and glycoproteins, are believed to be biologically and pharmacologically active. Although previous research suggests that the alkylamides present in may be responsible for reducing the symptoms associated with the common cold or flu through their immunomodulatory activity, the roles of specific alkylamides and their targets (i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!