A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Differential changes in the molecular stability of collagen from the pulmonary and aortic valves during the fetal-to-neonatal transition. | LitMetric

During the fetal-to-neonatal transition, transvalvular pressures (TVPs) on the aortic and pulmonary valves change dramatically-but differently for each valve. We have examined changes in the molecular stability and crosslinking of collagen during this transition. Aortic and pulmonary valves were harvested from fetal and neonatal cattle. Using differential scanning calorimetry (DSC), denaturation of valvular collagen was examined and, using HPLC, the types and quantities of enzymatic crosslinks were examined. No difference in hydrothermal stability was found between the collagens in the fetal aortic and pulmonary valves; this was expected since the TVP is approximately the same across both valves before birth. Only in the neonatal samples was the collagen from aortic valves (higher TVP) less stable than that from pulmonary valves (lower TVP). Surprisingly, the enthalpy of denaturation did not differ either between valve type or with age, suggesting an entropic mechanism of altered molecular stability. A significant difference in immature-to-mature crosslink ratio was found between neonatal aortic and pulmonary valves: a difference absent in fetal valves. This ratio-indicative of remodeling rate-parallels (and may be a function of) the changing in vivo load. This study highlights the relationship between in vivo load and both (i) molecular stability and (ii) collagen remodeling in heart valves.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10439-010-0061-zDOI Listing

Publication Analysis

Top Keywords

pulmonary valves
20
molecular stability
16
aortic pulmonary
16
valves
10
changes molecular
8
stability collagen
8
aortic valves
8
fetal-to-neonatal transition
8
vivo load
8
pulmonary
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!