A parallel cholinergic brainstem pathway for enhancing locomotor drive.

Nat Neurosci

Department of Biological Sciences and Laboratory in Neurobiology, University of Illinois at Chicago, Chicago, Illinois, USA.

Published: June 2010

The brainstem locomotor system is believed to be organized serially from the mesencephalic locomotor region (MLR) to reticulospinal neurons, which in turn project to locomotor neurons in the spinal cord. We identified brainstem muscarinoceptive neurons in lampreys (Petromyzon marinus) that received parallel inputs from the MLR and projected back to reticulospinal cells to amplify and extend the duration of locomotor output. These cells responded to muscarine with extended periods of excitation, received direct muscarinic excitation from the MLR and projected glutamatergic excitation to reticulospinal neurons. Targeted blockade of muscarine receptors over these neurons profoundly reduced MLR-induced excitation of reticulospinal neurons and markedly slowed MLR-evoked locomotion. The presence of these neurons forces us to rethink the organization of supraspinal locomotor control, to include a sustained feedforward loop that boosts locomotor output.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2881475PMC
http://dx.doi.org/10.1038/nn.2548DOI Listing

Publication Analysis

Top Keywords

reticulospinal neurons
12
mlr projected
8
locomotor output
8
excitation reticulospinal
8
locomotor
7
neurons
7
parallel cholinergic
4
cholinergic brainstem
4
brainstem pathway
4
pathway enhancing
4

Similar Publications

Hodological patterning as an organizing principle in vertebrate motor circuitry.

Front Neuroanat

January 2025

Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.

Hodological patterning refers to developmental mechanisms that link the location of neurons in the brain or spinal cord to specific axonal trajectories that direct connectivity to synaptic targets either within the central nervous system or in the periphery. In vertebrate motor circuits, hodological patterning has been demonstrated at different levels, from the final motor output of somatic and preganglionic autonomic neurons targeting peripheral motoneurons and ganglion cells, to premotor inputs from spinal and brainstem neuron populations targeting the somatic motoneurons and preganglionic autonomic neurons, to cortical neurons that delegate movement commands to the brainstem and spinal neurons. In many cases molecular profiling reveals potential underlying mechanisms whereby selective gene expression creates the link between location and axon trajectory.

View Article and Find Full Text PDF

This study introduces a novel neuromechanical model employing a detailed spiking neural network to explore the role of axial proprioceptive sensory feedback, namely stretch feedback, in salamander locomotion. Unlike previous studies that often oversimplified the dynamics of the locomotor networks, our model includes detailed simulations of the classes of neurons that are considered responsible for generating movement patterns. The locomotor circuits, modeled as a spiking neural network of adaptive leaky integrate-and-fire neurons, are coupled to a three-dimensional mechanical model of a salamander with realistic physical parameters and simulated muscles.

View Article and Find Full Text PDF
Article Synopsis
  • The StartReact test is a noninvasive method used to evaluate the functioning of cortico-reticular pathways, but more research is needed on how different stimuli affect motor output.
  • A study examined the response of elbow flexor muscles in adults (ages 26-48) to three types of stimuli: visual only, audio-visual, and startle-inducing audio-visual, using surface electromyography (EMG) to measure muscle activity.
  • Results showed that reaction times were significantly faster and muscle activity was highest following startle-inducing stimuli, indicating that these stimuli may lead to both subcortical and cortical improvements in motor response.
View Article and Find Full Text PDF

The adult turtle spinal cord can generate multiple kinds of limb movements, including swimming, three forms of scratching, and limb withdrawal (flexion reflex), even without brain input and sensory feedback. There are many multifunctional spinal neurons, activated during multiple motor patterns, and some behaviorally specialized neurons, activated during only one. How do multifunctional and behaviorally specialized neurons each contribute to motor output? We analyzed in vivo intracellular recordings of multifunctional and specialized neurons.

View Article and Find Full Text PDF

Depletion or inhibition of core stress granule proteins, G3BP1 in mammals and TIAR-2 in , increases axon regeneration in injured neurons that show spontaneous regeneration. Inhibition of G3BP1 by expression of its acidic or 'B-domain' accelerates axon regeneration after nerve injury bringing a potential therapeutic intervention to promote neural repair in the peripheral nervous system. Here, we asked if G3BP1 inhibition is a viable strategy to promote regeneration in the injured mammalian central nervous system where axons do not regenerate spontaneously.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!