We have recently shown that Skp2 levels are high in undifferentiated human embryonic stem cells, but decline rapidly following induction of differentiation, thereby leading to accumulation of p27. Changes in Skp2 levels were found to be caused mainly by its rate of degradation. Here we show that the activity of APC/C (Cdh1), the ubiquitin ligase that targets Skp2 for degradation, increases markedly during the differentiation process of human embryonic stem cells. APC/C (Cdh1) is present but inactive in undifferentiated embryonic stem cells and becomes active in the differentiated state. The rise in APC/C (Cdh1) activity with differentiation appears to be due, at least in part, to a dramatic decline in the levels of its inhibitor Emi1. In addition, protein kinase activity also appears to contribute to the suppression of APC/C (Cdh1) activity in undifferentiated stem cells, possibly by inhibitory phosphorylation of Cdh1.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4161/cc.9.10.11727 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!