During disease progression in myelodysplastic syndromes (MDS), clonal blasts gain a more aggressive nature, whereas nonclonal immune cells become less efficient via an unknown mechanism. Using MDS cell lines and patient samples, we showed that the expression of an immunoinhibitory molecule, B7-H1 (CD274), was induced by interferon-gamma (IFNgamma) and tumor necrosis factor-alpha (TNFalpha) on MDS blasts. This induction was associated with the activation of nuclear factor-kappaB (NF-kappaB) and nearly completely blocked by an NF-kappaB inhibitor, pyrrolidine dithiocarbamate (PDTC). B7-H1(+) MDS blasts had greater intrinsic proliferative capacity than B7-H1(-) MDS blasts when examined in various assays. Furthermore, B7-H1(+) blasts suppressed T-cell proliferation and induced T-cell apoptosis in allogeneic cocultures. When fresh bone marrow samples from patients were examined, blasts from high-risk MDS patients expressed B7-H1 molecules more often compared with those from low-risk MDS patients. Moreover, MDS T cells often overexpressed programmed cell death 1 (PD-1) molecules that transmit an inhibitory signal from B7-H1 molecules. Taken together, these findings provide new insight into MDS pathophysiology. IFNgamma and TNFalpha activate NF-kappaB that in turn induces B7-H1 expression on MDS blasts. B7-H1(+) MDS blasts have an intrinsic proliferative advantage and induce T-cell suppression, which may be associated with disease progression in MDS.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3375140 | PMC |
http://dx.doi.org/10.1182/blood-2009-12-255125 | DOI Listing |
Am J Surg Pathol
January 2025
Department of Pathology, St. Jude Children's Research Hospital.
Zhongguo Shi Yan Xue Ye Xue Za Zhi
December 2024
Department of Hematology, The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing 210029, Jiangsu Province, China.
Objective: To explore the mutation of gene in patients with myelodysplastic syndromes (MDS), and explore their correlation with mutations of other genes, clinical features and prognostic of patients.
Methods: High throughput DNA sequencing was used to identify mutations in common blood tumor genes. The mutational characteristics of the gene and the correlation between gene mutations and patients clinical characteristics and prognosis were retrospectively analyzed.
Cancer Genomics Proteomics
December 2024
Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway;
Background/aim: Myelodysplastic syndromes (MDSs) are clonal bone marrow disorders characterized by ineffective hematopoiesis. They are classified based on morphology and genetic alterations, with SF3B1 variants linked to favorable prognosis and MECOM rearrangements associated with poor outcomes. The combined effects of these alterations remain unclear.
View Article and Find Full Text PDFArch Pathol Lab Med
December 2024
From the Department of Hematopathology, University of Texas, MD Anderson Cancer Center, Houston.
Context.—: Blasts in myelodysplastic syndromes (MDSs) typically have a primitive myeloid immunophenotype (CD34+CD117+CD13+CD33+HLA-DR+). On rare occasions, blasts were found to be CD34 negative or minimally expressed in a presumptive MDS.
View Article and Find Full Text PDFAnn Hematol
December 2024
Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo, Japan.
Transient abnormal myelopoiesis (TAM) generally affects newborns with Down syndrome and is associated with constitutional trisomy 21 and a somatic GATA1 mutation. Here we describe a case of TAM which evolved after umbilical cord blood transplantation (UCBT), whose origin was identified as a GATA1 mutation-harboring clone in umbilical cord blood (UCB) by detailed genetic analyses. A 58-year-old male who received UCBT for peripheral T-cell lymphoma presented progressive anemia and thrombocytopenia, and leukocytosis with blast cells in the peripheral blood (PB).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!