Sulfate-reducing bacteria (SRB) play a major role in the coupled biogeochemical cycling of sulfur and chalcophilic metal(loid)s. By implication, they can exert a strong influence on the speciation and mobility of multiple metal(loid) contaminants. In this study, we combined DsrAB gene sequencing and sulfur isotopic profiling to identify the phylogeny and distribution of SRB and to assess their metabolic activity in salt marsh sediments exposed to acid mine drainage (AMD) for over 100 years. Recovered dsrAB sequences from three sites sampled along an AMD flow path indicated the dominance of a single Desulfovibrio species. Other major sequence clades were related most closely to Desulfosarcina, Desulfococcus, Desulfobulbus, and Desulfosporosinus species. The presence of metal sulfides with low delta(34)S values relative to delta(34)S values of pore water sulfate showed that sediment SRB populations were actively reducing sulfate under ambient conditions (pH of approximately 2), although possibly within less acidic microenvironments. Interestingly, delta(34)S values for pore water sulfate were lower than those for sulfate delivered during tidal inundation of marsh sediments. 16S rRNA gene sequence data from sediments and sulfur isotope data confirmed that sulfur-oxidizing bacteria drove the reoxidation of biogenic sulfide coupled to oxygen or nitrate reduction over a timescale of hours. Collectively, these findings imply a highly dynamic microbially mediated cycling of sulfate and sulfide, and thus the speciation and mobility of chalcophilic contaminant metal(loid)s, in AMD-impacted marsh sediments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2901737 | PMC |
http://dx.doi.org/10.1128/AEM.03006-09 | DOI Listing |
Water Res
December 2024
Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 211135, China; Sino-Danish Centre for Education and Research, University of Chinese Academy of Sciences, Beijing 100039, China; Poyang Lake Wetland Research Station, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Jiujiang 332899, China. Electronic address:
Flash drought (FD) events induced by climate change may disrupt the normal hydrological regimes of floodplain lakes and affect the plant-microbe mediated dissimilatory nitrate reduction (DNR), i.e., denitrification, anammox and dissimilatory nitrate reduction to ammonium (DNRA), thus having important consequences for nitrous oxide (NO) emissions and nitrogen (N) retention.
View Article and Find Full Text PDFBioresour Technol
January 2025
Jingjiang College, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013 China; Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102 China. Electronic address:
Invasive Spartina alterniflora poses a significant threat to coastal wetland ecosystems. This study investigated the role of sulfur (S) in facilitating the invasion of S. alterniflora in cadmium (Cd)-contaminated coastal wetlands by greenhouse-control-experiment.
View Article and Find Full Text PDFMar Environ Res
January 2025
Key Laboratory of Marine Geology and Metallogeny, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China; Laboratory for Marine Geology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China. Electronic address:
Mangrove wetlands are strategic locations for mitigating climate changes. In order to address the harm of rapid climate change to mangrove ecosystems, it is necessary to scientifically predict the fate of mangrove ecosystems, which can be achieved by reconstructing the development history of mangrove forests. This study analyzes the contribution of mangrove-derived organic matter (CMOM) from sediment core F in Phang Nga Province, Thailand by using the endmember mixing model based on stable organic carbon isotopes (δC) and C/N (molar) ratio.
View Article and Find Full Text PDFWetlands (Wilmington)
January 2025
Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON Canada.
There are increasing global efforts and initiatives aiming to tackle climate change and mitigate its impacts via natural climate solutions (NCS). Wetlands have been considered effective NCS given their capacity to sequester and retain atmospheric carbon dioxide (CO) while also providing a myriad of other ecosystem functions that can assist in mitigating the impacts of climate change. However, wetlands have a dual impact on climate, influencing the atmospheric concentrations of both CO and methane (CH).
View Article and Find Full Text PDFJ Environ Qual
January 2025
Institute for the Environment, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
Population growth in coastal areas increases nitrogen inputs to receiving waterways and degrades water quality. Wetland habitats, including floodplain forests and marshes, can be effective nitrogen sinks; however, little is known about the effects of chronic point source nutrient enrichment on sediment nitrogen removal in tidally influenced coastal systems. This study characterizes enrichment patterns in two tidal systems affected by wastewater treatment facility (WWTF) effluent and assesses the impact on habitat nitrogen removal via denitrification.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!