Objective: Monoamine oxidase B (MAO-B) levels were observed increasing during aging in rat brains. (-)-Epigallocatechin-3-gallate (EGCG) is the major polyphenolic constituent in green tea. The objective of the present study was to investigate the EGCG compound for its effect on preventing an increase in MAO-B activity in rat brains. The total antioxidant capacity and lipid peroxidation of rats were also assessed.

Methods: Rats were assigned to three groups: Control, VE (α-tocopherol), and EGCG. Twenty-four male Long-Evans rats were fed normal diets for a total of 11 wk and test diets for a total of 12 wk. The serum analysis, serum total antioxidant capacity, tissue lipid peroxidation, and monoamine oxidase B enzyme activity were measured. The differences between the groups and between the control and experimental groups were analyzed. The correlation among the experimental results was also analyzed.

Results: The serum total antioxidant capacity of the EGCG group was higher than that observed in the Control and VE groups. In rat brains and livers, the lipid peroxidation levels were lower in the VE and EGCG groups compared with Control groups. EGCG and VE groups showed lower MAO-B enzyme activity in rat brains compared with Control groups. In contrast to the brain findings, there were no significant differences in the MAO-B enzyme activity among groups in rat livers.

Conclusion: The present study first indicates that EGCG supplementation was able to execute a tissue-selective decrease in the brain MAO-B enzyme activity in adult rats, in which it was actualized by way of preventing physiological peroxidation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nut.2009.11.022DOI Listing

Publication Analysis

Top Keywords

enzyme activity
20
rat brains
20
monoamine oxidase
12
total antioxidant
12
antioxidant capacity
12
lipid peroxidation
12
control groups
12
mao-b enzyme
12
groups
9
green tea
8

Similar Publications

Design Strategy of PepNzymes-SH for an Emerging Catalyst with Serine Hydrolase-Like Functionality.

ACS Appl Mater Interfaces

January 2025

CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.

Serine hydrolases, as a class of green catalysts with hydrolytic and dehydrating activities, hold significant application value in the fields of biosynthesis and organic synthesis. However, practical applications face numerous challenges, including maintaining enzyme stability and managing usage costs. PepNzymes-SH, an emerging green catalytic material with enzyme-like activity, overcomes the operational limitations of natural enzymes and holds great promise as a substitute for hydrolases.

View Article and Find Full Text PDF

Objective: Aim: To investigate the effect of succinic acid on the humoral component of the immune system in rats.

Patients And Methods: Materials and Methods: The study was conducted on two groups of mature non-linear white rats (males) of similar weight (200-270 g, aged 6-8 months), with 5 animals in each group. The control group was fed a standard diet with free access to water throughout the experiment.

View Article and Find Full Text PDF

The local environment of the active site, such as the confinement of hydronium ions within zeolite pores, significantly influences catalytic turnover, similar to enzyme functionality. This study explores these effects in the hydrolysis of guaiacols─lignin-derived compounds─over zeolites in water. In addition to the interesting catechol products, this reaction is advantageous for study due to its bimolecular hydrolysis pathway, which involves a single energy barrier and no intermediates, simplifying kinetic studies and result interpretation.

View Article and Find Full Text PDF

Neomorphic leukemia-derived mutations in the TET2 enzyme induce genome instability via a substrate shift from 5-methylcytosine to thymine.

Proc Natl Acad Sci U S A

February 2025

Center for Medical Research and Innovation, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, Chinese Academy of Medical Sciences (RU069), Medical College of Fudan University, Shanghai 201399, China.

Ten-eleven translocation (TET) enzymes oxidize 5-methylcytosine (mC) in DNA, contributing to the regulation of gene transcription. Diverse mutations of TET2 are frequently found in various blood cancers, yet the full scope of their functional consequences has been unexplored. Here, we report that a subset of TET2 mutations identified in leukemia patients alter the substrate specificity of TET2 from acting on mC to thymine.

View Article and Find Full Text PDF

Many applications of enzymes benefit from activity on structurally diverse substrates. Here, we sought to engineer the decarboxylative aldolase UstD to perform a challenging C-C bond forming reaction with ketone electrophiles. The parent enzyme had only low levels of activity, portending multiple rounds of directed evolution and a possibility that mutations may inadvertently increase the specificity of the enzyme for a single model screening substrate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!