Pine cone powder surface was treated with potassium hydroxide and applied for copper(II) and lead(II) removal from solution. Isotherm experiments and desorption tests were conducted and kinetic analysis was performed with increasing temperatures. As solution pH increased, the biosorption capacity and the change in hydrogen ion concentration in solution increased. The change in hydrogen ion concentration for lead(II) biosorption was slightly higher than for copper(II) biosorption. The results revealed that ion-exchange is the main mechanism for biosorption for both metal ions. The pseudo-first order kinetic model was unable to describe the biosorption process throughout the effective biosorption period while the modified pseudo-first order kinetics gave a better fit but could not predict the experimentally observed equilibrium capacities. The pseudo-second order kinetics gave a better fit to the experimental data over the temperature range from 291 to 347 K and the equilibrium capacity increased from 15.73 to 19.22 mg g(-1) for copper(II) and from 23.74 to 26.27 for lead(II). Activation energy was higher for lead(II) (22.40 kJ mol(-1)) than for copper(II) (20.36 kJ mol(-1)). The free energy of activation was higher for lead(II) than for copper(II) and the values of DeltaH* and DeltaS* indicate that the contribution of reorientation to the activation stage is higher for lead(II) than copper(II). This implies that lead(II) biosorption is more spontaneous than copper(II) biosorption. Equilibrium studies showed that the Langmuir isotherm gave a better fit for the equilibrium data indicating monolayer coverage of the biosorbent surface. There was only a small interaction between metal ions when simultaneously biosorbed and cation competition was higher for the Cu-Pb system than for the Pb-Cu system. Desorption studies and the Dubinin-Radushkevich isotherm and energy parameter, E, also support the ion-exchange mechanism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2010.03.005 | DOI Listing |
Front Pediatr
January 2025
Department of Pediatrics, Dandong Central Hospital, China Medical University, Dandong, China.
Objective: To establish a prediction nomogram for early prediction of neonatal acute respiratory distress syndrome (NARDS).
Methods: This is a retrospective cross-sectional study conducted between January 2021 and December 2023. Clinical characteristics and laboratory results of cases with neonatal pneumonia were compared in terms of presence of NARDS diagnosis based on the Montreux Definition.
BMC Palliat Care
January 2025
Department of Social Sciences and Guidance, Faculty of Health and Social Sciences, University of Inland Norway, Elverum, Norway.
Background: Providing quality palliative care during a pandemic was challenging. Both specialist and community healthcare services cared for patients that faced life-threatening illness and who were influenced by the restrictions of the COVID-19 pandemic. Little knowledge has yet been provided on how registered nurses (RNs) experienced the palliative care quality during the COVID-19 pandemic.
View Article and Find Full Text PDFEnviron Res
January 2025
Department of Chemical Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India - 603202.
Pesticide contamination in wastewater poses a significant environmental challenge, driven by extensive agricultural use. This study evaluates the removal of chlorpyrifos (CPS) using sugarcane bagasse-based biochar alginate beads in a continuous fixed-bed adsorption column, achieving a remarkable 95-98% removal efficiency. Compared to conventional adsorbents like activated carbon, which typically show CPS adsorption capacities ranging from 50-70 mg g⁻ under similar conditions, the biochar alginate beads demonstrate better performance with a sorption capacity of 91.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Department of Civil and Environmental Engineering, Indian Institute of Technology Patna, Bihar - 801 106, India. Electronic address:
Perfluorooctanoic acid (PFOA) removal has gained significant attention due to its environmental stability and potential toxicity. This study aims to synthesize a chitosan-modified magnetic biochar (CS_MBC) for efficient PFOA removal from aqueous solutions. Various CS loading ratios (0.
View Article and Find Full Text PDFJMIR Form Res
January 2025
Department of Medical Informatics, Amsterdam UMC - University of Amsterdam, Amsterdam, Netherlands.
Background: The prognosis for patients with several types of cancer has substantially improved following the introduction of immune checkpoint inhibitors, a novel type of immunotherapy. However, patients may experience symptoms both from the cancer itself and from the medication. A prototype of the eHealth tool Cancer Patients Better Life Experience (CAPABLE) was developed to facilitate symptom management, aimed at patients with melanoma and renal cell carcinoma treated with immunotherapy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!