Multisensory integration plays several important roles in the nervous system. One is to combine information from multiple complementary cues to improve stimulus detection and discrimination. Another is to resolve peripheral sensory ambiguities and create novel internal representations that do not exist at the level of individual sensors. Here we focus on how ambiguities inherent in vestibular, proprioceptive and visual signals are resolved to create behaviorally useful internal estimates of our self-motion. We review recent studies that have shed new light on the nature of these estimates and how multiple, but individually ambiguous, sensory signals are processed and combined to compute them. We emphasize the need to combine experiments with theoretical insights to understand the transformations that are being performed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2901182 | PMC |
http://dx.doi.org/10.1016/j.conb.2010.04.009 | DOI Listing |
Curr Biol
January 2025
Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA. Electronic address:
Flavor is the quintessential multisensory experience, combining gustatory, retronasal olfactory, and texture qualities to inform food perception and consumption behavior. However, the computations that govern multisensory integration of flavor components and their underlying neural mechanisms remain elusive. Here, we use rats as a model system to test the hypothesis that taste and smell components of flavor are integrated in a reliability-dependent manner to inform hedonic judgments and that this computation is performed by neurons in the primary taste cortex.
View Article and Find Full Text PDFCortex
December 2024
Institute of Research in Psychology (IPSY) & Institute of Neuroscience (IoNS), Louvain Bionics Center, University of Louvain (UCLouvain), Louvain-la-Neuve, Belgium; School of Health Sciences, HES-SO Valais-Wallis, The Sense Innovation and Research Center, Lausanne & Sion, Switzerland. Electronic address:
Effective social communication depends on the integration of emotional expressions coming from the face and the voice. Although there are consistent reports on how seeing and hearing emotion expressions can be automatically integrated, direct signatures of multisensory integration in the human brain remain elusive. Here we implemented a multi-input electroencephalographic (EEG) frequency tagging paradigm to investigate neural populations integrating facial and vocal fearful expressions.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy.
Over the last three decades, adult neurogenesis in mammals has been a central focus of neurobiological research, providing insights into brain plasticity and function. However, interest in this field has recently waned due to challenges in translating findings into regenerative applications and the ongoing debate about the persistence of this phenomenon in the adult human brain. Despite these hurdles, significant progress has been made in understanding how adult neurogenesis plays a critical role in the adaptation of brain circuits to environmental stimuli regulating key brain functions.
View Article and Find Full Text PDFElife
January 2025
Department of Psychology, Queens University, Kingston, Canada.
Movie-watching is a central aspect of our lives and an important paradigm for understanding the brain mechanisms behind cognition as it occurs in daily life. Contemporary views of ongoing thought argue that the ability to make sense of events in the 'here and now' depend on the neural processing of incoming sensory information by auditory and visual cortex, which are kept in check by systems in association cortex. However, we currently lack an understanding of how patterns of ongoing thoughts map onto the different brain systems when we watch a film, partly because methods of sampling experience disrupt the dynamics of brain activity and the experience of movie-watching.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, IL 60208.
Human perception systems are highly refined, relying on an adaptive, plastic, and event-driven network of sensory neurons. Drawing inspiration from Nature, neuromorphic perception systems hold tremendous potential for efficient multisensory signal processing in the physical world; however, the development of an efficient artificial neuron with a widely calibratable spiking range and reduced footprint remains challenging. Here, we report an efficient organic electrochemical neuron (OECN) with reduced footprint (<37 mm) based on high-performance vertical OECT (vOECT) complementary circuitry enabled by an advanced n-type polymer for balanced p-/n-type vOECT performance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!