Neutrophils play a significant role in maintaining the integrity of innate immunity via their potent respiratory burst activity. However, the uncontrolled activation of respiratory burst in neutrophils also attributes to chronic diseases such as primary hypertension and atherosclerosis. In our study, we have investigated the activation of respiratory burst function of neutrophils harvested from essential hypertensive patients. In the presence of stimuli PMA and opsonized zymosan (OZ), hypertensive patients' neutrophils secrete significantly higher amount of superoxide anions compared to normotensive control. Although the magnitude of activation varies between both groups, yet the kinetics of activation is similar. When normotensive control's neutrophils were pre-treated with hypertensive serum, the cells failed to migrate toward fMLP which indicates the impairment of the migration property. In conclusion, the respiratory burst activity of neutrophils is affected by hypertension and their elevated superoxide anions production could be an aggravating factor in hypertension-related complication.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cellimm.2010.04.004 | DOI Listing |
J Neurophysiol
January 2025
Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington.
The persistent Na current (I) is thought to play important roles in many brain regions including the generation of inspiration in the ventral respiratory column (VRC) of mammals. The characterization of the slow inactivation of I requires long-lasting voltage steps (>1 s), which will increase intracellular Na and activate the Na/K-ATPase pump current (I). Thus, I may contribute to the previously measured slow inactivation of I and the generation of the inspiratory bursting rhythm.
View Article and Find Full Text PDFFood Chem
January 2025
Department of Botany, University of Gour Banga, Malda 732103, West Bengal, India.
In the background of antioxidation properties of selenium (Se) in plants, the role of nano‑selenium (Se-NPs) was justified in the modulation of Capsicum fruit ripening. In our study, exogenous application of 8 mg L Se-NPs on fruits through 7 days (D) of postharvest storage regulated decay rate, water loss and fruit coat firmness. Se-NPs recovered fruit coat damages with reduction of ion leakage, lipid oxidation, and accumulation of polyamines.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China. Electronic address:
Ambrosia trifida is an invasive weed that destroys the local ecological environment, and causes a reduction in population diversity and grassland decline. The evolution of herbicide resistance has also increased the difficulty of managing A. trifida, so interspecific plant competition based on allelopathy has been used as an effective and sustainable ecological alternative.
View Article and Find Full Text PDFMolecules
December 2024
Faculty of Medicine Foča, University of East Sarajevo, Studentska 5, 73 300 Foča, Bosnia and Herzegovina.
Dapsone is a sulfone used in treating inflammatory skin conditions. Despite its widespread dermatological use, the pharmacological actions of dapsone remain poorly understood. Here, we examined how different aspects of neutrophil functions are affected by dapsone.
View Article and Find Full Text PDFAppl Environ Microbiol
January 2025
Department of Marine Sciences, University of Connecticut, Groton, Connecticut, USA.
Ocean warming due to climate change endangers coral reefs, and regional nitrogen overloading exacerbates the vulnerability of reef-building corals as the dual stress disrupts coral-Symbiodiniaceae mutualism. Different forms of nitrogen may create different interactive effects with thermal stress, but the underlying mechanisms remain elusive. To address the gap, we measured and compared the physiological and transcriptional responses of the Symbiodiniaceae to heat stress (31°C) when supplied with different types of nitrogen (nitrate, ammonium, or urea).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!