A series of heteroleptic tridentate ruthenium(II) complexes of composition [(H(2)pbbzim)Ru(tpy-X)](PF(6))(2) (1-7), where H(2)pbbzim = 2,6-bis(benzimidazole-2-yl)pyridine and tpy-X = 4'-substituted terpyridine ligands with X = H, p-methyl phenyl (PhCH(3)), p-bromomethylphenyl (PhCH(2)Br), p-dibromomethylphenyl (PhCHBr(2)), p-cyanomethylphenyl (PhCH(2)CN), p-triphenylphosphonium methylphenyl bromide (PhCH(2)PPh(3)Br), and 4'-phenylformyl (PhCHO) groups, has been synthesized and characterized by using standard analytical and spectroscopic techniques. These compounds were designed to increase the excited-state lifetime of ruthenium(II) bisterpyridine-type complexes. The X-ray crystal structure of a representative compound 2, which crystallized with monoclinic space group P2(1)/c, has been determined. The absorption spectra, redox behavior, and luminescence properties of the ruthenium(II) complexes have been thoroughly investigated. All of the complexes display moderately strong luminescence at room temperature with lifetimes in the range of 10-58 ns. Correlations have been obtained for the Hammett sigma(p) parameter with their MLCT emission energies, lifetimes, redox potentials, proton NMR chemical shifts, etc. The anion binding properties of all the complexes as well as the parent ligand H(2)pbbzim have been studied in acetonitrile using absorption, emission, and (1)H NMR spectral studies, and it has been observed that the metalloreceptors act as sensors for F(-), AcO(-), and to some extent H(2)PO(4)(-). At a relatively lower concentration of anions, a 1:1 H-bonded adduct is formed; however, in the presence of an excess of anions, stepwise deprotonation of the two benzimidazole N-H fragments occurs, an event which is signaled by the development of vivid colors visible with the naked eye. The receptor-anion binding constants have been evaluated. Cyclic voltammetric (CV) measurements carried out in acetonitrile-dimethylformamide (9:1) provided evidence in favor of anion (F(-), AcO(-)) concentration dependent electrochemical responses, enabling 1 - 7 to act as suitable electrochemical sensors for F(-) and AcO(-) ions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic100138sDOI Listing

Publication Analysis

Top Keywords

rutheniumii complexes
12
sensors aco-
8
complexes
6
synthesis characterization
4
characterization photophysical
4
photophysical anion-binding
4
anion-binding studies
4
studies luminescent
4
luminescent heteroleptic
4
heteroleptic bis-tridentate
4

Similar Publications

Multicationic ruthenium phthalocyanines as photosensitizers for photodynamic inactivation of multiresistant microbes.

Eur J Med Chem

December 2024

Departamento de Química Orgánica, Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain; Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain. Electronic address:

Four photosensitizers PS1a-PS4a consisting in multicationic ruthenium(II) phthalocyanines (RuPcs) have been evaluated in photodynamic inactivation (PDI) of multiresistant microorganisms. The RuPcs, bearing from 4 to 12 terminal ammonium salts, have been designed to target the microorganisms cytoplasmic cell membrane and display high singlet oxygen quantum yields. In addition, PS3a and PS4a were conceived to exhibit multi-target localization by endowing them with amphiphilic character, using two different structural approaches.

View Article and Find Full Text PDF

Adenosine 5'-triphosphate (ATP) plays a pivotal role as an essential intermediate in energy metabolism, influencing nearly all biological metabolic processes. Cancer cells predominantly rely on glycolysis for ATP production, differing significantly from normal cells. Real-time in situ monitoring and rapid response to intracellular ATP levels offers more valuable insights into cancer cell physiology.

View Article and Find Full Text PDF

The five-coordinate complex [RuCl(PNP)] () was synthesized from the binuclear [RuCl(-cym)] with a PNP-type ligand (PNP = 3,6-di--butyl-1,8-bis(dipropylphosphino)methyl)-9-carbazole - (Cbzdiphos )H) in a toluene solution, within 20 h at 110 °C, producing a green solid, which was precipitated with a 1/1 mixture of - pentane/HMDSO. The complex was characterized by NMR-H, C, and P{H}, mass spectroscopy-LIFDI, FTIR, UV/vis spectroscopy, and cyclic voltammetry, as well as a description of the optimized structure by DFT calculation. The reactivity of was investigated in the presence of potassium triethylborohydride (KBEtH, in THF solution of 1.

View Article and Find Full Text PDF

Herein, the photophysical, photochemical properties and photogenerated excited state dynamics of two new Ru(II) complexes, viz. [Ru(p-ttp)(bpy)(PTA)]2+ [1]2+, [Ru(p-ttp)(phen)(PTA)]2+ [2]2+ having a phosphorus-based ligand PTA [p-ttp = p-tolyl terpyridine; bpy = 2,2'-bipyridyl; phen = 1,10-phenthroline and PTA = 1,3,5-triaza-7-phosphaadamantane] are reported. Upon excitation with 470 nm LED, [1]2+ and [2]2+ neither undergo ligand release nor exhibit room temperature luminescence/1O2 generation.

View Article and Find Full Text PDF

The ruthenium compounds have been known to have the wide range of potential applications as anticancer, antibacterial and anti-diabetic etc. The ligand substitutions play a vital role in enhancing the pharmacological and biological activities. In the present study, three ruthenium-metal based complexes, designated as (I-III), were synthesized and characterized employing element analysis, FTIR and HNMR.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!