Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Chemical modification of gelatin by a natural phenolic compound tannic acid (TA) at pH 8 was studied, and the properties of the modified gelatin materials were examined. The cross-linking effect was predominant when the TA content was lower, resulting in the formation of a partially insoluble cross-link network. The cross-linking structure was stable even under boiling, and the protein matrix became rigid, whereas the mechanical properties were enhanced. An effective cross-linking effect on gelatin matrix was achieved when the amount of TA was around 3 wt %. Further increase in the TA content enhanced the grafting and branching reactions between gelatin and TA in conjunction with the hydrogen bonding between gelatin and TA molecules. These effects produced an increase in molecular mobility of gelatin matrix, and the materials displayed a behavior similar to that of plasticized protein materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jf1004226 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!