Copper salts have been screened for transmetalation and electrophilic quench of N-tert-butoxycarbonyl-2-lithiopyrrolidine (N-Boc-2-lithiopyrrolidine) and N-Boc-2-lithiopiperidine, formed by deprotonation of N-Boc-pyrrolidine and N-Boc-piperidine, respectively. Transmetalation with zinc chloride then (lithium chloride solubilized) copper cyanide followed by allylation typically gives mixtures of regioisomers (S(N)2 and S(N)2' products), whereas transmetalation with copper iodide.TMEDA then allylation occurs regioselectively (S(N)2 mechanism). Addition to an enone or alpha,beta-unsaturated ester occurs by 1,4-addition. Asymmetric deprotonation of N-Boc-pyrrolidine or dynamic resolution in the presence of a chiral ligand of N-Boc-2-lithiopiperidine followed by the zinc/copper chemistry was successful and gave the allylated pyrrolidine and piperidine products with good enantioselectivity, although use of the copper iodide chemistry resulted in some loss of enantiopurity. The chemistry provides formal syntheses of (+)-allosedridine, (+)-lasubine II, and (+)-pseudohygroline and has been used for the synthesis of (+)-coniine, (-)-pelletierine, (+)-coniceine, (-)-norhygrine, and the ant extract alkaloids cis- and trans-2-butyl-5-propylpyrrolidine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jo100415x | DOI Listing |
J Org Chem
June 2010
Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, UK.
Copper salts have been screened for transmetalation and electrophilic quench of N-tert-butoxycarbonyl-2-lithiopyrrolidine (N-Boc-2-lithiopyrrolidine) and N-Boc-2-lithiopiperidine, formed by deprotonation of N-Boc-pyrrolidine and N-Boc-piperidine, respectively. Transmetalation with zinc chloride then (lithium chloride solubilized) copper cyanide followed by allylation typically gives mixtures of regioisomers (S(N)2 and S(N)2' products), whereas transmetalation with copper iodide.TMEDA then allylation occurs regioselectively (S(N)2 mechanism).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!