The mechanism of wild-type and R37A mutant Pseudomonas dacunhae aspartate beta-decarboxylase (ABDC) was studied by rapid-scanning stopped-flow spectrophotometry. Mixing wild-type ABDC with 50 mM disodium l-Asp resulted in the formation of a 325 nm absorption peak within the dead time of the stopped-flow instrument, likely the ketimine of pyridoxamine 5'-phosphate and oxaloacetate or pyruvate. After consumption of the l-Asp, the 360 nm feature of the resting enzyme was restored. Thus, the 325 nm species is a catalytically competent intermediate. In contrast, mixing wild-type ABDC with the disodium salt of either threo- or erythro-beta-hydroxy-dl-Asp at 50 mM resulted in a much slower formation of the 325 nm complex, with an apparent rate constant of approximately 1 or 0.006 s(-1), respectively. When wild-type ABDC is mixed with disodium succinate, a nonreactive analogue of l-Asp, formation of a new peak at 425 nm is observed. The apparent rate constant for formation of the 425 nm band exhibits a hyperbolic dependence on succinate concentration, showing that there is a rapid binding equilibrium, followed by a slower reaction in which the internal aldimine is protonated on the Schiff base N. Hydrostatic pressure shifts the spectrum from the 425 nm form to the 360 nm form, consistent with a conformational change. It is likely that the binding of substrate or analogues induces a conformational change that releases strain in the Lys pyridoxal 5'-phosphate Schiff base and increases the pK(a), resulting in protonation of the Schiff base to initiate transaldimination. Mixing of R37A mutant ABDC with 50 mM l-Asp also results in the formation of the 325 nm complex, but with an apparent rate constant of 0.2 s(-1), at least 5000-fold slower than the rate of wild-type ABDC. In contrast to wild-type ABDC, R37A ABDC shows no change in the cofactor spectrum when mixed with disodium succinate. These results suggest that Arg-37, a conserved active site residue in ABDC, plays a role in modulating the pK(a) of the pyridoxal 5'-phosphate complexes during catalysis.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi100272gDOI Listing

Publication Analysis

Top Keywords

wild-type abdc
20
l-asp formation
12
formation 325
12
apparent rate
12
rate constant
12
schiff base
12
abdc
9
pseudomonas dacunhae
8
dacunhae aspartate
8
aspartate beta-decarboxylase
8

Similar Publications

The mechanism of wild-type and R37A mutant Pseudomonas dacunhae aspartate beta-decarboxylase (ABDC) was studied by rapid-scanning stopped-flow spectrophotometry. Mixing wild-type ABDC with 50 mM disodium l-Asp resulted in the formation of a 325 nm absorption peak within the dead time of the stopped-flow instrument, likely the ketimine of pyridoxamine 5'-phosphate and oxaloacetate or pyruvate. After consumption of the l-Asp, the 360 nm feature of the resting enzyme was restored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!