Biomaterials-associated-infections (BAI) are serious complications in modern medicine. Although non-adhesive coatings, like polymer-brush coatings, have been shown to prevent bacterial adhesion, they do not support cell growth. Bi-functional coatings are supposed to prevent biofilm formation while supporting tissue integration. Here, bacterial and cellular responses to poly(ethylene glycol) (PEG) brush-coatings on titanium oxide presenting the integrin-active peptide RGD (arginine-glycine-aspartic acid) (bioactive "PEG-RGD") were compared to mono-functional PEG brush-coatings (biopassive "PEG") and bare titanium oxide (TiO2) surfaces under flow. Staphylococcus epidermidis ATCC 35983 was deposited on the surfaces under a shear rate of 11 s-1 for 2 h followed by seeding of U2OS osteoblasts. Subsequently, both S. epidermidis and U2OS cells were grown simultaneously on the surfaces for 48 h under low shear (0.14 s-1). After 2 h, staphylococcal adhesion was reduced to 3.6-/+1.8 x 103 and 6.0-/+3.9 x 103 cm-2 on PEG and PEG-RGD coatings respectively, compared to 1.3-/+0.4 x 105 cm-2 for the TiO2 surface. When allowed to grow for 48 h, biofilms formed on all surfaces. However, biofilms detached from the PEG and PEG-RGD coatings when exposed to an elevated shear (5.6 s-1) U2OS cells neither adhered nor spread on PEG brush-coatings, regardless of the presence of biofilm. In contrast, in the presence of biofilm, U2OS cells adhered and spread on PEG-RGD coatings with a significantly higher surface coverage than on bare TiO2. The detachment of biofilm and the high cell surface coverage revealed the potential significance of PEG-RGD coatings in the context of the "race for the surface" between bacteria and mammalian cells.

Download full-text PDF

Source
http://dx.doi.org/10.22203/ecm.v019a20DOI Listing

Publication Analysis

Top Keywords

peg-rgd coatings
16
peg brush-coatings
12
u2os cells
12
biofilm formation
8
cell growth
8
titanium oxide
8
peg peg-rgd
8
cells adhered
8
adhered spread
8
presence biofilm
8

Similar Publications

Porphyrin Centered Paclitaxel Tetrameric Prodrug Nanoassemblies as Tumor-Selective Theranostics for Synergized Breast Cancer Therapy.

Adv Healthc Mater

January 2023

Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China.

Although having undergone decades of development, nanoparticulate drug delivery vehicles for efficient cancer therapy remain a challenge, confined by low drug loading, instability, and poor cancer tissue selectivity. A self-assembled prodrug, the combination of prodrug strategy and the self-assembly merits, represents a special chemical entity which spontaneously organizes into supramolecular composites with defined architecture, therefore also providing a strategy to develop new medications. Paclitaxel (PTX) is still among the most generally prescribed chemotherapeutics in oncology but is restricted by poor solubility.

View Article and Find Full Text PDF

Biodegradable Hollow Polydopamine@manganese Dioxide as an Oxygen Self-Supplied Nanoplatform for Boosting Chemo-photodynamic Cancer Therapy.

ACS Appl Mater Interfaces

December 2021

Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China.

Photodynamic therapy (PDT) has attracted extensive attention in the clinical treatment of malignant tumor. However, the acidic and hypoxic conditions of the tumor microenvironment (TME) limit the further application of PDT in the clinic. Herein, we fabricate a new nanoplatform─HPDA@MnO@Ce6/DOX@PEG-RGD (HPMRCD)─by means of coating hollow polydopamine nanoparticles (HPDA) with manganese dioxide (MnO), which is modified by cyclic RGD functionalized poly(ethylene glycol) (PEG) and further co-loaded with a photosensitizer, Chlorin e6 (Ce6), and a chemotherapy drug, doxorubicin (DOX).

View Article and Find Full Text PDF

Polydopamine-Coated Laponite Nanoplatforms for Photoacoustic Imaging-Guided Chemo-Phototherapy of Breast Cancer.

Nanomaterials (Basel)

February 2021

College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.

Theranostic nanoplatforms combining photosensitizers and anticancer drugs have aroused wide interest due to the real-time photoacoustic (PA) imaging capability and improved therapeutic efficacy by the synergistic effect of chemotherapy and phototherapy. In this study, polydopamine (PDA) coated laponite (LAP) nanoplatforms were synthesized to efficiently load indocyanine green (ICG) and doxorubicin (DOX), and modified with polyethylene glycol-arginine-glycine-aspartic acid (PEG-RGD) for PA imaging-guided chemo-phototherapy of cancer cells overexpressing αβ integrin. The formed ICG/LAP-PDA-PEG-RGD/DOX nanoplatforms showed significantly higher photothermal conversion efficiency than ICG solution and excellent PA imaging capability, and could release DOX in a pH-sensitive and NIR laser-triggered way, which is highly desirable feature in precision chemotherapy.

View Article and Find Full Text PDF

Gene therapy is an emerging therapeutic strategy used in clinics. Ultrasound-mediated gene transfection possesses great potential as a secure and available approach for gene delivery. However, transfection efficiency and targeting ability remain challenging.

View Article and Find Full Text PDF

The limited efficacy of "smart" nanotheranostic agents in eradicating tumors calls for the development of highly desirable nanoagents with diagnostics and therapeutics. Herein, to surmount these challenges, we constructed an intelligent nanoregulator by coating a mesoporous carbon nitride (CN) layer on a core-shell nitrogen-doped graphene quantum dot (N-GQD)@hollow mesoporous silica nanosphere (HMSN) and decorated it with a P-PEG-RGD polymer, to achieve active-targeting delivery (designated as R-NCNP). Upon irradiation, the resultant R-NCNP nanoregulators exhibit significant catalytic breakdown of water molecules, causing a sustainable elevation of oxygen level owing to the CN shell, which facilitates tumor oxygenation and relieves tumor hypoxia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!