Obtaining models of dynamic 3D objects is an important part of content generation for computer graphics. Numerous methods have been extended from static scenarios to model dynamic scenes. If the states or poses of the dynamic object repeat often during a sequence (but not necessarily periodically), we call such a repetitive motion. There are many objects, such as toys, machines, and humans, undergoing repetitive motions. Our key observation is that when a motion-state repeats, we can sample the scene under the same motion state again but using a different set of parameters; thus, providing more information of each motion state. This enables robustly acquiring dense 3D information difficult for objects with repetitive motions using only simple hardware. After the motion sequence, we group temporally disjoint observations of the same motion state together and produce a smooth space-time reconstruction of the scene. Effectively, the dynamic scene modeling problem is converted to a series of static scene reconstructions, which are easier to tackle. The varying sampling parameters can be, for example, structured-light patterns, illumination directions, and viewpoints resulting in different modeling techniques. Based on this observation, we present an image-based motion-state framework and demonstrate our paradigm using either a synchronized or an unsynchronized structured-light acquisition method.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TVCG.2009.207 | DOI Listing |
Gels
January 2025
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
Protein-based hydrogels with stretchability and conductivity have potential applications in wearable electronic devices. However, the development of protein-based biocomposite hydrogels is still limited. In this work, we used natural ferritin to develop a PVA/ferritin biocomposite hydrogel by a repetitive freeze-thaw method.
View Article and Find Full Text PDFJ Hip Preserv Surg
December 2024
Hip and Knee Adult Reconstruction Department, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra, Calzada México-Xochimilco No. 289 Colonia Arenal de Guadalupe Delegación, Tlalpan C.P., Ciudad de México 14389, México.
Femoroacetabular impingement syndrome (FAIS) is a common condition of the hip that can cause significant damage to the joint, leading to degeneration and osteoarthritis. FAIS constitutes an abnormal and dynamic contact between the femoral head-neck junction and the acetabular rim, resulting from altered bone morphology at one or both sites. Repetitive trauma at the site of impingement generates progressive damage to the acetabular labrum, chondrolabral junction, and articular cartilage.
View Article and Find Full Text PDFSports Biomech
January 2025
Athlete Support Research Center, Niigata University of Health and Welfare, Niigata, Japan.
This study aimed to (1) examine the acute changes in the glenohumeral range of motion (ROM) after repetitive pitching and (2) clarify whether arm speed during pitching is associated with changes in the glenohumeral internal rotation (IR) and horizontal adduction (HADd) ROM. Fifteen healthy college males with over five years of baseball experience participated. Glenohumeral ROMs of IR, external rotation, and HADd were measured using a digital inclinometer before, immediately after, and one day after completing 100 repetitive full-effort pitches.
View Article and Find Full Text PDFJ Appl Biomech
January 2025
Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
Repetitive manual labor tasks involving twisting, bending, and lifting commonly lead to lower back and knee injuries in the workplace. To identify tasks with high injury risk, we recruited N = 9 participants to perform industry-relevant, 2-handed lifts with a 11-kg weight. These included symmetrical/asymmetrical, ascending/descending lifts that varied in start-to-end heights (knee-to-waist and waist-to-shoulder).
View Article and Find Full Text PDFJ Neural Eng
January 2025
Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States of America.
High-density nerve cuffs have been successfully utilized to restore somatosensation in individuals with lower-limb loss by interfacing directly with the peripheral nervous system. Elicited sensations via these devices have improved various functional outcomes, including standing balance, walking symmetry, and navigating complex terrains. Deploying neural interfaces in the lower limbs of individuals with limb loss presents unique challenges, particularly due to repetitive muscle contractions and the natural range of motion in the knee and hip joints for transtibial and transfemoral amputees, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!