Rhabdomyosarcoma is the most common soft tissue sarcoma in the pediatric population. As this tumor has an undifferentiated myogenic phenotype, agents that promote differentiation hold particular promise as part of a novel therapeutic approach to combat this type of cancer. In this report, we focus on the contribution of two microRNAs (miRNAs) in rhabdomyosarcomas. Levels of miR-1 and miR-133a are drastically reduced in representative cell lines from each major rhabdomyosarcoma subtype (embryonal and alveolar). Introduction of miR-1 and miR-133a into an embryonal rhabdomyosarcoma-derived cell line is cytostatic, thereby suggesting a tumor suppressor-like role for these myogenic miRNAs. Transcriptional profiling of cells after miR-1 and miR-133a expression reveals that miR-1 (but not miR-133a) exerts a strong promyogenic influence on these poorly differentiated tumor cells. We identify mRNAs that are down-regulated by these miRNAs and propose roles for miR-1 and miR-133a in repressing isoforms of genes that are normally not expressed in muscle. Finally, we show that mRNA targets of miR-1 and miR-133a are up-regulated in rhabdomyosarcomas, suggesting a causative role for these miRNAs in the development of rhabdomyosarcomas. More important, these results point to the promise of enhancing rhabdomyosarcoma therapy using miRNAs as agents that mediate cytostasis and promote muscle differentiation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3231107PMC
http://dx.doi.org/10.1096/fj.09-150698DOI Listing

Publication Analysis

Top Keywords

mir-1 mir-133a
28
roles mir-1
8
mir-1
7
mir-133a
7
mirnas
5
distinct roles
4
mir-133a proliferation
4
proliferation differentiation
4
rhabdomyosarcoma
4
differentiation rhabdomyosarcoma
4

Similar Publications

Identification of reference microRNAs in skeletal muscle of a canine model of Duchenne muscular dystrophy.

Wellcome Open Res

November 2024

Department of Clinical Science and Services, Comparative Neuromuscular Diseases Laboratory, Royal Veterinary College, London, NW1 0TU, UK.

Article Synopsis
  • Duchenne muscular dystrophy (DMD) is a severe condition resulting from mutations in the dystrophin gene, and DE50-MD dogs serve as a model to test new therapies for this disease.
  • * Researchers aimed to find stable microRNA (miR) references for normalizing expression data across different ages and muscle groups in both healthy (WT) and DMD-affected dogs.
  • * The study identified four stable miRs (miR-191, let-7b, miR-125a, and miR-15a) that can be used to accurately normalize the expression levels of other miRs in muscle, indicating differences in miR levels between DE50-MD and WT dogs.
View Article and Find Full Text PDF

MicroRNAs as Biomarkers in Spinal Muscular Atrophy.

Biomedicines

October 2024

Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia.

Spinal muscular atrophy (SMA) is a severe neurodegenerative disease caused by the loss of the survival motor neuron (SMN) protein, leading to degeneration of anterior motor neurons and resulting in progressive muscle weakness and atrophy. Given that SMA has a single, well-defined genetic cause, gene-targeted therapies have been developed, aiming to increase SMN production in SMA patients. The SMN protein is likely involved in the synthesis of microRNAs (miRNAs), and dysregulated miRNA expression is increasingly associated with the pathophysiology of SMA.

View Article and Find Full Text PDF

miR-1, miR-133a, miR-29b and skeletal muscle fibrosis in chronic limb-threatening ischaemia.

Sci Rep

November 2024

Regenerative Medicine Institute (REMEDI), University of Galway, Biomedical Sciences 1st Floor South, Corrib Village, Dangan, Galway, Ireland.

Chronic limb-threatening ischaemia (CLTI), the most severe manifestation of peripheral arterial disease (PAD), is associated with a poor prognosis and high amputation rates. Despite novel therapeutic approaches being investigated, no significant clinical benefits have been observed yet. Understanding the molecular pathways of skeletal muscle dysfunction in CLTI is crucial for designing successful treatments.

View Article and Find Full Text PDF

Potential diagnostic value of circulating miRNAs in HFrEF and bioinformatics analysis.

Heliyon

October 2024

Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.

Background: Few studies have compared the performances of those reported miRNAs as biomarkers for heart failure with reduced EF (HFrEF) in a population at high risk. The purpose of this study is to investigate comprehensively the performance of those miRNAs as biomarkers for HFrEF.

Methods: By using bioinformatics methods, we also examined these miRNAs' target genes and possible signal transduction pathways.

View Article and Find Full Text PDF

Peripheral arterial disease (PAD) is associated with lower-extremity muscle wasting. Hallmark features of PAD-associated skeletal muscle pathology include loss of skeletal muscle mass, reduced strength and physical performance, increased inflammation, fibrosis, and adipocyte infiltration. At the molecular level, skeletal muscle ischemia has also been associated with gene and microRNA (miRNA) dysregulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!