This is the first report that inhibition of negative regulators of skeletal muscle by a soluble form of activin type IIB receptor (ACE-031) increases muscle mass independent of fiber-type expression. This finding is distinct from the effects of selective pharmacological inhibition of myostatin (GDF-8), which predominantly targets type II fibers. In our study 8-wk-old C57BL/6 mice were treated with ACE-031 or vehicle control for 28 days. By the end of treatment, mean body weight of the ACE-031 group was 16% greater than that of the control group, and wet weights of soleus, plantaris, gastrocnemius, and extensor digitorum longus muscles increased by 33, 44, 46 and 26%, respectively (P<0.05). Soleus fiber-type distribution was unchanged with ACE-031 administration, and mean fiber cross-sectional area increased by 22 and 28% (P<0.05) in type I and II fibers, respectively. In the plantaris, a predominantly type II fiber muscle, mean fiber cross-sectional area increased by 57% with ACE-031 treatment. Analysis of myosin heavy chain (MHC) isoform transcripts by real-time PCR indicated no change in transcript levels in the soleus, but a decline in MHC I and IIa in the plantaris. In contrast, electrophoretic separation of total soleus and plantaris protein indicated that there was no change in the proportion of MHC isoforms in either muscle. Thus these data provide optimism that ACE-031 may be a viable therapeutic in the treatment of musculoskeletal diseases. Future studies should be undertaken to confirm that the observed effects are not age dependent or due to the relatively short study duration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2944638PMC
http://dx.doi.org/10.1152/japplphysiol.00866.2009DOI Listing

Publication Analysis

Top Keywords

activin type
8
type iib
8
iib receptor
8
skeletal muscle
8
administration soluble
4
soluble activin
4
type
4
receptor promotes
4
promotes skeletal
4
muscle growth
4

Similar Publications

Hereditary haemorrhagic telangiectasia.

Nat Rev Dis Primers

January 2025

European Reference Network for Rare Multisystemic Vascular Disease (VASCERN), HHT Rare Disease Working Group, Paris, France.

Hereditary haemorrhagic telangiectasia (HHT) is a vascular dysplasia inherited as an autosomal dominant trait and caused by loss-of-function pathogenic variants in genes encoding proteins of the BMP signalling pathway. Up to 90% of disease-causal variants are observed in ENG and ACVRL1, with SMAD4 and GDF2 less frequently responsible for HHT. In adults, the most frequent HHT manifestations relate to iron deficiency and anaemia owing to recurrent epistaxis (nosebleeds) or bleeding from gastrointestinal telangiectases.

View Article and Find Full Text PDF

Bone morphogenetic proteins are essential for bone regeneration/fracture healing but can also induce heterotopic ossification (HO). Understanding accessory factors modulating BMP signaling would provide both a means of enhancing BMP-dependent regeneration while preventing HO. This study focuses on the ability of the collagen receptor, discoidin domain receptor 2 (DDR2), to regulate BMP activity.

View Article and Find Full Text PDF

Excessive BMP3b suppresses skeletal muscle differentiation.

Biochem Biophys Res Commun

December 2024

Molecular Signaling and Biochemistry, Kyushu Dental University, Kokurakitaku, Kitakyushu, Fukuoka, Japan.

Bone morphogenetic protein (BMP)-3b, also known as growth differentiation factor (GDF)-10, belongs to the transforming growth factor (TGF)-β superfamily. Despite being named a BMP, BMP3b is considered as an intermediate between the TGFβ/activin/myostatin and BMP/GDF subgroups of the TGFβ superfamily. Myoblast differentiation is tightly regulated by various cytokines, including the TGFβ superfamily members.

View Article and Find Full Text PDF

Background: Activin A, a noteworthy member of the TGF-β superfamily. Activin A can regulate the biological functions of various immune cells, such as macrophages, neutrophils, NK cells, etc. The purpose of this study is to investigate the regulatory effect and related mechanisms of activin A on CD8 T cells.

View Article and Find Full Text PDF

Overactivation of the Transforming Growth Factor Beta (TGF-β) pathway is implicated in the pathogenesis of cytopenias in Myelodysplastic syndromes (MDS) and Acute Myeloid Leukemia (AML). IOA-359 and IOA-360 are potent small molecule inhibitors of the TGF-beta Receptor type I kinase (TGF-βRI, also referred to as ALK5, activin receptor-like kinase 5) that abrogate SMAD phosphorylation in hematopoietic cell lines. Both inhibitors were able to inhibit TGF-β mediated gene transcription at specific doses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!