Sonolytic, sonocatalytic and sonophotocatalytic degradation of chitosan in the presence of TiO2 nanoparticles.

Ultrason Sonochem

University of Tabriz, Faculty of Chemistry, Department of Physical Chemistry, Tabriz, Iran.

Published: January 2011

The degradation of chitosan by means of ultrasound irradiation and its combination with heterogeneous (TiO(2)) was investigated. Emphasis was given on the effect of additives on degradation rate constants. Ultrasound irradiation (24 kHz) was provided by a sonicator, while an ultraviolet source of 16 W was used for UV irradiation. The extent of sonolytic degradation increased with increasing ultrasound power (in the range 30-90 W), while the presence of TiO(2) in the dark generally had little effect on degradation. On the other hand, TiO(2) sono-photocatalysis led to complete chitosan degradation in 60 min with increasing catalyst loading. TiO(2) sonophotocatalysis was always faster than the respective individual processes due to the enhanced formation of reactive radicals as well as the possible ultrasound-induced increase of the active surface area of the catalyst. The degraded chitosans were characterized by X-ray diffraction (XRD), gel permeation chromatography (GPC) and Fourier transform infrared (FT-IR) spectroscopy and average molecular weight of ultrasonicated chitosan was determined by measurements of relative viscosity of samples. The results show that the total degree of deacetylation (DD) of chitosan did not change after degradation and the decrease of molecular weight led to transformation of crystal structure. A negative order for the dependence of the reaction rate on total molar concentration of chitosan solution within the degradation process was suggested.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultsonch.2010.04.004DOI Listing

Publication Analysis

Top Keywords

degradation
8
degradation chitosan
8
presence tio2
8
ultrasound irradiation
8
molecular weight
8
chitosan
6
tio2
5
sonolytic sonocatalytic
4
sonocatalytic sonophotocatalytic
4
sonophotocatalytic degradation
4

Similar Publications

Gestational diabetes mellitus (GDM) is a metabolic disorder that arises during pregnancy and heightens the risk of placental dysplasia. Ginsenoside Re (Re) may stabilize insulin and glucagon to regulate glucose levels, which may improve diabetes-associated diseases. This study aims to investigate the mechanism of Re in high glucose (HG)-induced apoptosis of trophoblasts through endoplasmic reticulum stress (ERS)-related protein CHOP/GADD153.

View Article and Find Full Text PDF

Incidence and Risk Factors for Amiodarone-Induced Thyroid Dysfunction: A Nationwide Retrospective Cohort Study.

Am J Cardiovasc Drugs

January 2025

Division of Cardiology, Department of Internal Medicine, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Republic of Korea.

Background: Amiodarone is an effective anti-arrhythmic drug; however, it is frequently associated with thyroid dysfunction. The aim of this study was to investigate the incidence and risk factor of amiodarone-induced dysfunction in an iodine-sufficient area.

Methods: This retrospective cohort study included 27,023 consecutive patients treated with amiodarone for arrhythmia, using the Korean National Health Insurance database.

View Article and Find Full Text PDF

Trehalose has neuroprotective effects in neurodegenerative diseases. This study aimed to explore the impact of trehalose on traumatic brain injury (TBI) by investigating its role in neuroprotection. The TBI mice model was established utilizing the cortical impact technique followed by trehalose treatment.

View Article and Find Full Text PDF

From Genetic Findings to new Intestinal Molecular Targets in Lipid Metabolism.

Curr Atheroscler Rep

January 2025

Nantes Université, CHU Nantes, CNRS, Inserm, l'institut du thorax, F-44000, Nantes, France.

Purpose Of Review: While lipid-lowering therapies demonstrate efficacy, many patients still contend with significant residual risk of atherosclerotic cardiovascular diseases (ASCVD). The intestine plays a pivotal role in regulating circulating lipoproteins levels, thereby exerting influence on ASCVD pathogenesis. This review underscores recent genetic findings from the last six years that delineate new biological pathways and actors in the intestine which regulate lipid-related ASCVD risk.

View Article and Find Full Text PDF

Recent studies have suggested that the interaction between diet and an individual's genetic predisposition can determine the likelihood of obesity and various metabolic disorders. The current study aimed to examine the association of dietary branched-chain amino acids(BCAAs) and aromatic amino acids(AAAs) with the expression of the leptin and FTO genes in the visceral and subcutaneous adipose tissues of individuals undergoing surgery. This cross-sectional study was conducted on 136 Iranian adults, both men and women, aged ≥18 years.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!