Kinetics of Hg(II) adsorption and desorption in calcined mussel shells.

J Hazard Mater

Area de Edafoloxía e Química Agrícola, Departamento de Bioloxía Vexetal e Ciencia do Solo, Univ. Vigo, Facultade de Ciencias, 32004 Ourense, Spain.

Published: August 2010

The potential use of calcined mussel shells to purify water contaminated with mercury was evaluated. The Hg(II) adsorption and desorption kinetics were studied in batch-type and stirred-flow chamber experiments. The adsorption/desorption experiments revealed some differences between the batches of shells used. The batch of shells that displayed the greatest capacity to adsorb Hg(II), via a highly irreversible reaction, also contained more Fe and Al than the other batches. The results of the stirred-flow chamber experiments indicated a high degree of irreversibility in the process of Hg(II) adsorption in the mussel shell, and that Hg(II) was rapidly retained. The results of these experiments also revealed that the efficiency of depuration differed depending on the length of time that the system was used: when the system was operated for 55 min, depurating 162 mL of inflowing water g(-1) mussel shell, a 90% reduction in the initial concentration of Hg(II) was obtained; use of the system for 90 min, depurating 265 mL water g(-1) mussel shell, produced a 75% reduction in the initial Hg(II), and use of the system for 162.5 min, depurating 487 mL of water g(-1) mussel shell, resulted in a 50% reduction in the initial Hg(II).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2010.04.079DOI Listing

Publication Analysis

Top Keywords

mussel shell
16
hgii adsorption
12
min depurating
12
water g-1
12
g-1 mussel
12
reduction initial
12
adsorption desorption
8
calcined mussel
8
mussel shells
8
stirred-flow chamber
8

Similar Publications

Unlabelled: Bone tissue substitutes are increasing in importance. Hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP) act as a cell matrix and improve its mechanical properties. One of their raw materials is marine-origin by-products.

View Article and Find Full Text PDF

The quagga mussel, : a novel model for EcoEvoDevo, environmental research, and the applied sciences.

Front Cell Dev Biol

January 2025

Department of Evolutionary Biology, Unit for Integrative Zoology, University of Vienna, Vienna, Austria.

Bivalve mollusks are globally distributed in marine and freshwater habitats. While exhibiting a relatively uniform bodyplan that is characterized by their eponymous bivalved shell that houses the soft-bodied animal, many lineages have acquired unique morphological, physiological, and molecular innovations that account for their high adaptability to the various properties of aquatic environments such as salinity, flow conditions, or substrate composition. This renders them ideal candidates for studies into the evolutionary trajectories that have resulted in their diversity, but also makes them important players for research concerned with climate change-induced warming and acidification of aquatic habitats.

View Article and Find Full Text PDF

A growing body of theoretical studies and laboratory experiments has focused attention on reciprocal feedbacks between ecological and evolutionary processes. However, uncertainty remains about whether such eco-evolutionary feedbacks have an important or negligible influence on natural communities. Thus, recent discussions call for field experiments that explore whether selection on phenotypic variation within populations leads to contemporaneous effects on community dynamics.

View Article and Find Full Text PDF

Catechol redox maintenance in mussel adhesion.

Nat Rev Chem

January 2025

Department of Chemistry & Biochemistry, University of California Santa Barbara, Santa Barbara, CA, USA.

Catechol-functionalized proteins in mussel holdfasts are essential for underwater adhesion and cohesion and have inspired countless synthetic polymeric materials and devices. However, as catechols are prone to oxidation, long-term performance and stability of these inventions awaits effective antioxidation strategies. In mussels, catechol-mediated interactions are stabilized by 'built-in' homeostatic redox reservoirs that restore catechols oxidized to quinones.

View Article and Find Full Text PDF

Genetic analysis of L 1758 (Mollusca, Bivalvia, Pinnidae) in the Northwest Cabo Verde Islands (Central-East Atlantic).

PeerJ

January 2025

CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Campus de Vairão, Porto, Portugal.

The rough pen shell Linnaeus, 1758 (family Pinnidae) is a mollusc with an Atlantic-Mediterranean distribution, typically inhabiting coarse sandy substrates. Habitat degradation is considered the primary cause of population decline, leading to the designation 'Vulnerable' in certain regions. In this study, we conducted a genetic analysis of populations of from Cabo Verde and compared them with populations from the Mediterranean and Macaronesia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!