Trimethyltin increases choline acetyltransferase in rat hippocampus.

Neurotoxicol Teratol

Department of Anatomy, James H. Quillen College of Medicine, East Tennessee State University, Johnson City 37614.

Published: July 1991

The environmental neurotoxin trimethyltin (TMT) destroys parts of the hippocampal formation as well as the entorhinal cortex but leaves the septal cholinergic projection to the hippocampus and dentate gyrus intact. In this study we measured choline acetyltransferase (ChAT) activity in micropunch samples of the dentate gyrus, the CA1 region of Ammon's horn, and the caudate-putamen as a measure of density of cholinergic innervation in control rats and rats exposed to 7 mg/kg TMT by means of gastric intubation. Three months after the rats were exposed to a single dose of TMT both the dentate gyrus and CA1 demonstrated significantly higher ChAT activity in TMT-exposed rats than in control rats. No differences were found between groups for the caudate-putamen samples. These results support the hypothesis that exposure to TMT causes reactive synaptogenesis in the cholinergic septohippocampal system.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0892-0362(91)90017-qDOI Listing

Publication Analysis

Top Keywords

dentate gyrus
12
choline acetyltransferase
8
chat activity
8
gyrus ca1
8
control rats
8
rats exposed
8
rats
5
trimethyltin increases
4
increases choline
4
acetyltransferase rat
4

Similar Publications

Our understanding of the meningeal immune system has recently burgeoned, particularly regarding how innate and adaptive effector cells are mobilized to meet brain challenges. However, information on how meningeal immunocytes guard brain homeostasis in healthy individuals remains limited. This study highlights the heterogeneous, polyfunctional regulatory T cell (T) compartment in the meninges.

View Article and Find Full Text PDF

In this study, we aimed to explore the sex-specific effects and mechanisms of sevoflurane exposure on the neural development of pubertal rats on the basis of M1/M2 microglial cell polarisation and related signalling pathways. A total of 48 rat pups (24 males and 24 females) were assigned to the 0- or 2-h sevoflurane exposure group on the seventh day after birth. The Morris water maze (MWM) test was subsequently conducted on the 32nd to 38th days after birth.

View Article and Find Full Text PDF

rTMS improves cognitive function and its real-time and cumulative effect on neuronal excitability in aged mice.

Brain Res

January 2025

Key Laboratory of Digital Medical Engineering of Hebei Province, College of Electronic & Information Engineering, Hebei University, Baoding, Hebei 071002, PR China. Electronic address:

Repetitive transcranial magnetic stimulation (rTMS) is acknowledged for its critical role in modulating neuronal excitability and enhancing cognitive function. The dentate gyrus of the hippocampus is closely linked to cognitive processes; however, the precise mechanisms by which changes in its excitability influence cognition are not yet fully understood. This study aimed to elucidate the effects on granule cell excitability and the effects on cognition of high-frequency rTMS in naturally aging mice, as well as to investigate the potential interactions between these two factors.

View Article and Find Full Text PDF

How does chronic pain lead to memory loss?

Elife

January 2025

Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.

A dysfunctional signaling pathway in the hippocampus has been linked to chronic pain-related memory impairment in mice.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) is one of the primary causes of mortality and disability, with arterial blood pressure being an important factor in the clinical management of TBI. Spontaneously hypertensive rats (SHRs), widely used as a model of essential hypertension and vascular dementia, demonstrate dysfunction of the hypothalamic-pituitary-adrenal axis, which may contribute to glucocorticoid-mediated hippocampal damage. The aim of this study was to assess acute post-TBI seizures, delayed mortality, and hippocampal pathology in SHRs and normotensive Sprague Dawley rats (SDRs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!