Background: Several studies have shown that hair follicle bugle cells can differentiate into hair follicles and contribute to the formation of the epidermis and sebaceous gland. Although many lines of evidence have suggested that the renewal and maintenance of the sebaceous gland depends on hair follicle bulge cells, direct evidence supporting the in vitro differentiation of follicle bulge cells into sebaceous gland cells has not been found.
Methods: Rat vibrissa follicle bulge cells were isolated, cultured, and transfected with green fluorescent protein (GFPC1) plasmids carrying the peroxisome proliferator-activated receptor gamma2 (PPARgamma2 ) gene. The transfected cells were cultured in modified medium, and the morphologic changes of the cells were observed. Moreover, the expression of epithelial membrane antigens (EMAs) by the cells was detected by immunocytochemistry, and adipogenesis of the cells was evaluated.
Results: After induction culture, the cell body enlarged gradually and contained abundant cytoplasm; lipid droplets appeared in the cytoplasm of some cells, and the cells resembled sebocytes of the sebaceous gland. The cells were positive on oil red O and EMA staining. The expression of PPARgamma2 mRNA and protein was significantly upregulated in PPARgamma2-transfected cells. The rate of oil red O-stained and EMA-positive cells was higher in PPARgamma2-transfected cells after induction than in bulge-PPARgamma2 cells and non-transfected bulge cells.
Conclusions: Rat vibrissa hair follicle bulge cells may differentiate into sebocytes in vitro, and the PPARgamma2 gene plays a crucial role.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1365-4632.2009.04144.x | DOI Listing |
Cell Mol Life Sci
January 2025
Department of Anesthesiology, Shenzhen Children's Hospital, Yitian Road 7019, Shenzhen, 518000, China.
Hair follicle (HF) development and pigmentation are complex processes governed by various signaling pathways, such as TGF-β and FGF signaling pathways. Nestin + (neural crest like) stem cells are also expressed in HF stem cells, particularly in the bulge and dermal papilla region. However, the specific role and differentiation potential of these Nestin-positive cells within the HF remain unclear, especially regarding their contribution to melanocyte formation and hair pigmentation.
View Article and Find Full Text PDFCells
December 2024
Department of Immunology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea.
The hair follicle is a complex of mesenchymal and epithelial cells acquiring different properties and characteristics responsible for fulfilling its inductive and regenerative role. The epidermal and dermal crosstalk induces morphogenesis and maintains hair follicle cycling properties. The hair follicle is enriched with pluripotent stem cells, where dermal papilla (DP) cells and dermal sheath (DS) cells constitute the dermal compartment and the epithelial stem cells existing in the bulge region exert their regenerative role by mediating the epithelial-mesenchymal interaction (EMI).
View Article and Find Full Text PDFPLoS One
January 2025
School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom.
Biol Pharm Bull
December 2024
Faculty of Pharmacy, Kindai University.
In this study, we attempted to enhance the delivery of minoxidil (MXD) nanocrystals into hair follicles for efficacious hair growth treatment. We applied a bead milling method and designed an MXD nanocrystal dispersion containing methylcellulose (MC) and gum arabic (GA), termed MG-MXD@NP, with a particle size of 110 nm. In vivo studies in C57BL/6 mice showed that MG-MXD@NP improved MXD delivery to the skin tissue, hair bulges, and hair bulbs, resulting in earlier and superior hair growth compared with a commercially available MXD lotion (Riup 5%, CA-MXD).
View Article and Find Full Text PDFHum Cell
November 2024
Department of Anatomy, Faculty of Medicine, Qom Medical Sciences, Islamic Azad University, Qom, Iran.
Stem cells, particularly bulge hair follicle stem cells (HFSCs), have recently attracted significant interest due to their potential for tissue repair and regeneration. These cells, marked by their expression of Nestin (a neural stem cell marker), suggest the possibility of neural differentiation into neurons. This study investigated the use of retinoic acid (RA) and epidermal growth factor (EGF) to induce HFSC transformation into mature neurons, identified by synaptophysin expression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!