Familial nonmedullary thyroid cancer: a review of the genetics.

Thyroid

Department of Endocrine Surgery, Chelsea and Westminster NHS Trust, London, United Kingdom.

Published: July 2010

Objective: Thyroid cancer, the commonest of endocrine malignancies, continues to increase in incidence with over 19,000 new cases diagnosed in the European Union per year. Although nonmedullary thyroid cancer (NMTC) is mostly sporadic, evidence for a familial form, which is not associated with other Mendelian cancer syndromes (e.g., familial adenomatous polyposis and Cowden's syndrome), is well documented and thought to cause more aggressive disease. Just over a decade ago, the search for a genetic susceptibility locus for familial NMTC (FNMTC) began. This review details the genetic studies conducted thus far in the search for potential genes for FNMTC.

Design: An electronic PubMed search was performed from the English literature for genetics of FNMTC and genetics of familial papillary thyroid carcinoma (subdivision of FNMTC). The references from the selected papers were reviewed to identify further studies not found in the original search criteria.

Main Outcome: Six potential regions for harboring an FNMTC gene have been identified: MNG1 (14q32), TCO (19p13.2), fPTC/PRN (1q21), NMTC1 (2q21), FTEN (8p23.1-p22), and the telomere-telomerase complex. Important genes reported to have been excluded are RET, TRK, MET, APC, PTEN, and TSHR.

Conclusion: The genetics of FNMTC is an exciting field in medical research that has the potential to permit individualized management of thyroid cancer. Studies thus far have been on small family groups using varying criteria for the diagnosis of FNMTC. Results have been contradictory and further large-scale genetic studies utilizing emerging molecular screening tests are warranted to elucidate the underlying genetic basis of FNMTC.

Download full-text PDF

Source
http://dx.doi.org/10.1089/thy.2009.0216DOI Listing

Publication Analysis

Top Keywords

thyroid cancer
16
nonmedullary thyroid
8
genetic studies
8
genetics fnmtc
8
fnmtc
7
familial
5
thyroid
5
cancer
5
familial nonmedullary
4
cancer review
4

Similar Publications

This study evaluated the global burden of thyroid cancer (TC) from 1990 to 2021, analyzing its association with sociodemographic factors, sex, age, risk factors, and future projections. Using 2021 Global Burden of Disease data, we analyzed TC incidence, mortality, and disability-adjusted life years (DALYs) across populations. Risk factors were assessed, and future trends forecasted using the Bayesian age-period-cohort model.

View Article and Find Full Text PDF

Approximately 10-20% of thyroid cancers are driven by gene fusions, which activate oncogenic signaling through aberrant overexpression, ligand-independent dimerization, or loss of inhibitory motifs. We identified 13 thyroid tumors with thyroglobulin (TG) gene fusions and aimed to assess their histopathology and the fusions' oncogenic and tumorigenic properties. Of 11 cases with surgical pathology, 82% were carcinomas and 18% noninvasive follicular thyroid neoplasms with papillary-like nuclear features (NIFTP).

View Article and Find Full Text PDF

Microsurgical Reconstruction of Complex Scalp Defects With Vastus Lateralis Free Flap.

Microsurgery

February 2025

Plastic and Reconstructive Surgery, Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy.

Background: Scalp reconstruction is a challenging field for plastic surgeons. In case of large or complex defects, microsurgical-free flaps are usually required. Reconstructive failure can result in high morbidity and in some cases be life-threatening.

View Article and Find Full Text PDF

Anaplastic thyroid carcinoma (ATC) is one rare type of thyroid carcinoma without standard systemic treatment for advanced disease. Recent evidence has demonstrated promising efficacy of immune checkpoint inhibitors, particularly those targeting programmed death-1 (PD-1)/programmed death ligand 1 (PD-L1), in a variety of solid tumors. However, there have been no research of immune checkpoint inhibitors plus chemotherapy in ATC.

View Article and Find Full Text PDF

Modulating gene expression as a strategy to investigate thyroid cancer biology.

Arch Endocrinol Metab

January 2025

Universidade de São Paulo Instituto de Ciências Biomédicas Departamento de Biologia Celular e do Desenvolvimento São PauloSP Brasil Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil.

Modulating the expression of a coding or noncoding gene is a key tool in scientific research. This strategy has evolved methodologically due to advances in cloning approaches, modeling/algorithms in short hairpin RNA (shRNA) design for knockdown efficiency, and biochemical modifications in RNA synthesis, among other developments. Overall, these modifications have improved the ways to either reduce or induce the expression of a given gene with efficiency and facility for implementation in the lab.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!