Large single crystals of rabbit liver fructose-1,6-diphosphatase suitable for a high resolution structure analysis have been grown from polyethylene glycol. The space group of these crystals is I222 with a = 75 A, b = 81 A, and c = 132 A and there are 2 tetrameric molecules in the unit cell. These crystals have one protein subunit as the crystallographic asymmetric unit and establish point group symmetry 222 as the molecular symmetry.

Download full-text PDF

Source

Publication Analysis

Top Keywords

molecular symmetry
8
symmetry fructose-16-diphosphatase
4
fructose-16-diphosphatase x-ray
4
x-ray diffraction
4
diffraction analysis
4
analysis large
4
large single
4
single crystals
4
crystals rabbit
4
rabbit liver
4

Similar Publications

Many proteins form paralogous multimers-molecular complexes in which evolutionarily related proteins are arranged into specific quaternary structures. Little is known about the mechanisms by which they acquired their stoichiometry (the number of total subunits in the complex) and heterospecificity (the preference of subunits for their paralogs rather than other copies of the same protein). Here, we use ancestral protein reconstruction and biochemical experiments to study historical increases in stoichiometry and specificity during the evolution of vertebrate hemoglobin (Hb), an αβ heterotetramer that evolved from a homodimeric ancestor after a gene duplication.

View Article and Find Full Text PDF

Monte Carlo molecular simulations of curve-shaped rods show the propensity of such shapes to polymorphism revealing both smectic and polar nematic phases. The nematic exhibits a nanoscale modulated local structure characterized by a unique, polar, -symmetry axis that tightly spirals generating a mirror-symmetry-breaking organization of the achiral rods-form chirality. A comprehensive characterization of the polarity and its symmetries in the nematic phase confirms that the nanoscale modulation is distinct from the elastic deformations of a uniaxial nematic director in the twist-bend nematic phase.

View Article and Find Full Text PDF

We report an experimental study on how topological defects induced by cylindrical air inclusions in the ferroelectric nematic liquid crystal RM734 are influenced by ionic doping, including an ionic surfactant and ionic polymer. Our results show that subtle differences in molecular structure can lead to distinct surface alignments and topological defects. The ionic surfactant induces a planar alignment, with two -1/2 line defects adhering to the cylindrical bubble surface.

View Article and Find Full Text PDF

The epitaxial growth of molybdenum disulfide (MoS₂) on sapphire substrates enables the formation of single-crystalline monolayer MoS₂ with exceptional material properties on a wafer scale. Despite this achievement, the underlying growth mechanisms remain a subject of debate. The epitaxial interface is critical for understanding these mechanisms, yet its exact atomic configuration has previously been unclear.

View Article and Find Full Text PDF

New Algorithms to Generate Permutationally Invariant Polynomials and Fundamental Invariants for Potential Energy Surface Fitting.

J Chem Theory Comput

January 2025

State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, People's Republic of China.

Symmetric functions, such as Permutationally Invariant Polynomials (PIPs) and Fundamental Invariants (FIs), are effective and concise descriptors for incorporating permutation symmetry into neural network (NN) potential energy surface (PES) fitting. The traditional algorithm for generating such symmetric polynomials has a factorial time complexity of , where is the number of identical atoms, posing a significant challenge to applying symmetric polynomials as descriptors of NN PESs for larger systems, particularly with more than 10 atoms. Herein, we report a new algorithm which has only linear time complexity for identical atoms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!