Introduction: Bioluminescence imaging, especially planar bioluminescence imaging, has been extensively applied in in vivo preclinical biological research. Bioluminescence tomography (BLT) has the potential to provide more accurate imaging information due to its 3D reconstruction compared with its planar counterpart.
Methods: In this work, we introduce a positron emission tomography (PET) radionuclide imaging-based strategy to validate the BLT results. X-ray computed tomography, PET, spectrally resolved bioluminescence imaging, and surgical excision were performed on a tumor xenograft mouse model expressing a bioluminescent reporter gene.
Results: With different spectrally resolved measured data, the BLT reconstructions were acquired based on the third-order simplified spherical harmonics (SP3) approximation and the diffusion approximation (DA). The corresponding tomographic images were obtained for validation of bioluminescence source reconstruction.
Conclusion: Our results show the strength of PET imaging compared with other validation methods for BLT and improved source localization accuracy based on the SP(3) approximation compared with the diffusion approximation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3023015 | PMC |
http://dx.doi.org/10.1007/s11307-010-0332-y | DOI Listing |
Biophys Physicobiol
September 2024
Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan.
Single-molecule imaging provides information on diffusion dynamics, oligomerization, and protein-protein interactions in living cells. To simultaneously monitor different types of proteins at the single-molecule level, orthogonal fluorescent labeling methods with different photostable dyes are required. G-protein-coupled receptors (GPCRs), a major class of drug targets, are prototypical membrane receptors that have been studied using single-molecule imaging techniques.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, China.
Covalent modification of cell membranes has shown promise for tumor imaging and therapy. However, existing membrane labeling techniques face challenges such as slow kinetics and poor selectivity for cancer cells, leading to off-target effects and suboptimal efficacy. Here, we present an enzyme-triggered self-immobilization labeling strategy, termed E-SIM, which enables rapid and selective labeling of tumor cell membranes with bioorthogonal trans-cycloctene (TCO) handles .
View Article and Find Full Text PDFBMC Microbiol
January 2025
Department of Biomaterials and Biomedical Technology, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen, The Netherlands.
ACS Sens
January 2025
Materials Interfaces Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China.
Over recent years, the LUMinescent AntiBody Sensor (LUMABS) system, utilizing bioluminescence resonance energy transfer (BRET), has emerged as a highly effective method for antibody detection. This system incorporates NanoLuc (Nluc) as the donor and fluorescent protein (FP) as the acceptor. However, the limited Stokes shift of FP poses a challenge, as it leads to significant spectral cross-talk between the excitation and emission spectra.
View Article and Find Full Text PDFVaccines (Basel)
December 2024
Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium.
Background/objectives: Anguillid herpesvirus 1 (AngHV-1) (recently renamed Cyvirus anguillidallo 1) is the etiologic agent of a lethal disease that affects several eel species. It is thought to be one of the main infectious agents causing a population decline in wild eels and economic loss within the eel aquaculture sector. To date, no vaccines are available against AngHV-1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!