DNA methylation is an epigenetic mark that is critical in determining chromatin accessibility and regulating gene expression. This epigenetic mechanism has an important role in T-cell function. We used genome-wide methylation profiling to characterize the DNA methylome in primary human CD4+ T cells. We found that only 5% of CpG islands are methylated in CD4+ T cells, and that DNA methylation peak density is increased in subtelomeric chromosomal regions. We also found an inverse relationship between methylation peak density and chromosomal length. Our data indicate that DNA methylation in gene promoter regions is not always a repressive epigenetic mark. Indeed, about 27% of methylated genes are actively expressed in CD4+ T cells. We demonstrate that repressive methylation peaks are located closer to the transcription start site (TSS) compared with functionally non-repressive peaks (-893±110 bp versus -1342±218 bp (mean±s.e.m.), P-value <0.05). We also show that both a larger number and an increased CpG island density in promoter sequences predict transcriptional permissiveness of DNA methylation. TSS in the majority of genes with permissive DNA methylation peaks is in DNase I hypersensitive sites, indicating a failure of DNA methylation to induce chromatin inaccessibility in these loci.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2948060 | PMC |
http://dx.doi.org/10.1038/gene.2010.24 | DOI Listing |
Sci Rep
December 2024
State Key Laboratory for Diagnosis, Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
Influenza virus infections are a serious danger to people's health worldwide as they are responsible for seasonal flu outbreaks. There is an urgent need to improve the effectiveness and durability longevity of the immune response to influenza vaccines. We synthesized the CpG HP021 and examined the impact of it on the immune response to an influenza vaccine.
View Article and Find Full Text PDFSci Rep
December 2024
Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China.
Mesenchymal stem cells (MSCs) have been widely used in the treatment of various inflammatory diseases. The inadequate understanding of MSCs and their heterogeneity can impact the immune environment, which may be the cause of the good outcomes of MSCs-based therapy that cannot always be achieved. Recently, stem cells from human exfoliated deciduous teeth (SHED) showed great potential in inflammatory and autoimmune diseases due to their immature properties compared with MSCs.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, USA.
Double negative T (DNT) cells are a unique subset of CD3 + TCRαβ + T lymphocytes that lack CD4, CD8, or NK1.1 expression and constitute 3-5% of the total T cell population in C57BL/6 mice. They have increasingly gained recognition for their novel roles in the immune system, especially under autoimmune conditions.
View Article and Find Full Text PDFPediatr Rheumatol Online J
December 2024
Section of Rheumatology, Department of Pediatrics, Alberta Children's Hospital, University of Calgary, Calgary, Canada.
Background: Primary small vessel CNS vasculitis (sv-cPACNS) is a challenging inflammatory brain disease in children. Brain biopsy is mandatory to confirm the diagnosis. This study aims to develop and validate a histological scoring tool for diagnosing small vessel CNS vasculitis.
View Article and Find Full Text PDFBMC Microbiol
December 2024
Departments of Geriatrics, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, P. R. China.
Background: Evidence has revealed that oestrogen deprivation-induced osteolysis is microbiota-dependent and can be treated by probiotics. However, the underlying mechanism require further investigation. This study aims to provide additional evidence supporting the use of probiotics as an adjuvant treatment and to explore the pathophysiology of oestrogen-deprived osteolysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!