Purpose: Organ cultures of the rodent retina could provide a powerful tool in the study of cone development and differentiation. Previous attempts, however, have failed to show M-cone development in organ cultures of the mouse and rat retina. This study mimicked the in vivo dynamics of S- and M-cone development in a culturing approach for the postnatal rat retina.

Methods: Retinas of Brown Norway rats were collected at different developmental ages (postnatal day [P]0-P270) to study cone development in vivo. For culturing, the retinas were prepared from P0 to P2 animals and allowed to develop in organ culture for 2 to 15 days. Subsequently, opsin expression was analyzed immunohistochemically and morphometrically.

Results: In control retinas, S-opsin was already expressed at birth, whereas M-opsin was detected after P4. The maximum density of S-opsin-positive cones was reached at P10 (∼17,000 cells/mm(2)) and of M-opsin-positive cones, at P12 (∼14,000 cells/mm(2)). The number of both cone types decreased gradually thereafter to ∼1,000 S-opsin cones/mm(2) and ∼4,000 M-opsin cones/mm(2) in the adult. In culture, both cone types developed with dynamics of appearance comparable to those in vivo, with a peak density of ∼12,300 cones/mm(2) for S-opsin and ∼7,500 cones/mm(2) for M-opsin labeling.

Conclusions: These results in rat retina showed for the first time that cone development and expression dynamics can be mimicked in organ culture. With this experimental approach, it will be possible to evaluate aspects of cone development under controlled experimental conditions and to elucidate factors crucial for proper cone differentiation.

Download full-text PDF

Source
http://dx.doi.org/10.1167/iovs.09-4741DOI Listing

Publication Analysis

Top Keywords

cone development
16
rat retina
12
organ cultures
8
study cone
8
m-cone development
8
organ culture
8
cone types
8
development
7
cone
7
vivo
4

Similar Publications

The minimal sampling effort required to report the microbiome composition of insect surveyed in natural environment is often based on empirical or logistical constraints. This question was addressed with the white pine cone beetle, (Schwarz), a devastating insect pest of seed orchards. It attacks and stop the growth of the cones within which it will spend its life, on the ground.

View Article and Find Full Text PDF

Background/objectives: Adaptive optics ophthalmoscopy (AOO) has the potential to provide insights into AMD pathology and to assess the risk of progression. We aim to utilise AOO to describe detailed features of intermediate AMD and to characterise microscopic changes during atrophy development.

Subjects/methods: Patients with intermediate AMD were recruited into PINNACLE, a prospective observational cohort study.

View Article and Find Full Text PDF

Objectives: This study aimed to develop an automated method for generating clearer, well-aligned panoramic views by creating an optimized three-dimensional (3D) reconstruction zone centered on the teeth. The approach focused on achieving high contrast and clarity in key dental features, including tooth roots, morphology, and periapical lesions, by applying a 3D U-Net deep learning model to generate an arch surface and align the panoramic view.

Methods: This retrospective study analyzed anonymized cone-beam CT (CBCT) scans from 312 patients (mean age 40 years; range 10-78; 41.

View Article and Find Full Text PDF

Background: Sometimes, the identification of ground-glass opacities (GGOs), small or deep pulmonary nodules can be difficult also in expert hands. Usually for these lesions pulmonary lobectomy is an overtreatment, so we developed a technique to identify easily these nodules. The objective of this research is to assess the effectiveness and safety of using preoperative cone beam computed tomography (CBCT) to guide the placement of micro-coils in the lung parenchyma near GGO and small lesions.

View Article and Find Full Text PDF

A rare case of bone lesion: Mandible's fibrous dysplasia.

Natl J Maxillofac Surg

November 2024

Department of Health Sciences - Santi Paolo and Carlo Hospital, University of Milan, Italy.

Fibrous dysplasia is a rare genetic syndrome that affects bone tissue. This pathology replaces the mineralized matrix of the bone affected with connective and fibrous tissue. This article describes a mandibular fibrous osseous dysplasia case and its surgical treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!