Lymphocyte egress from lymph nodes requires the G-protein-coupled sphingosine 1-phosphate receptor-1 (S1P(1)). The activation antigen CD69 associates with and inhibits the function of S1P(1), inhibiting egress. Here we undertook biochemical characterization of the requirements for S1P(1)-CD69 complex formation. Domain swapping experiments between CD69 and the related type II transmembrane protein, NKRp1A, identified a requirement for the transmembrane and membrane proximal domains for specific interaction. Mutagenesis of S1P(1) showed a lack of requirement for N-linked glycosylation, tyrosine sulfation, or desensitization motifs but identified a requirement for transmembrane helix 4. Expression of CD69 led to a reduction of S1P(1) in cell lysates, likely reflecting degradation. Unexpectedly, the S1P(1)-CD69 complex exhibited a much longer half-life for binding of S1P than S1P(1) alone. In contrast to wild-type CD69, a non-S1P(1) binding mutant of CD69 failed to inhibit T cell egress from lymph nodes. These findings identify an integral membrane interaction between CD69 and S1P(1) and suggest that CD69 induces an S1P(1) conformation that shares some properties of the ligand-bound state, thereby facilitating S1P(1) internalization and degradation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2903414 | PMC |
http://dx.doi.org/10.1074/jbc.M110.123299 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!