Room temperature ionic liquids (ILs) have many applications including as matrices in MALDI. We wished to investigate the efficacy of ILs as matrices in time-of-flight secondary ion mass spectrometry and in mass spectrometric imaging (MS imaging). Two ILs derived from alpha-cyano-4-hydroxycinnamic acid (CHCA) were synthesized and tested using phospholipids, cholesterol, and peptides. The molecular ion intensities of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE), cholesterol, and bradykinin were greatly increased using IL matrices. Further, detection limits were also improved: for DPPC and DPPE detection, limits were at least 2 orders of magnitude better using IL matrices. However, these IL matrices were not effective for the enhancement of angiotensin I ions. The data also indicate that IL matrices are suitable for imaging MS. The IL matrices did not cause changes to the sample surface via matrix crystallization or other processes; no "hot spots" were observed in the mass spectra. As a demonstration, an onionskin membrane was imaged. In the matrix-enhanced MS images, ions characteristic of proteins and other biomolecules were observed which could not otherwise be observed. Clearly ionic liquids deserve further investigation in SIMS and MS imaging.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ac100133c | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!