Genome-wide changes accompanying the knockdown of Ep-CAM in retinoblastoma.

Mol Vis

Department of Ocular Pathology, Vision Research Foundation, Sankara Nethralaya, Chennai, India.

Published: May 2010

Purpose: Previously we showed that epithelial cell adhesion molecule (Ep-CAM), a cell surface molecule, was highly expressed in primary retinoblastoma tumors. In the present study, we studied the genes regulated by Ep-CAM in a retinoblastoma Y79 cell line in vitro using a combination of short interference RNA and microarray technology.

Methods: Flow cytometry, quantitative reverse transcriptase PCR (Q-RT-PCR), and immunohistochemistry were performed to confirm the Ep-CAM re-expression in the Y79 cells treated with 5'-azacytidine (AZC). Ep-CAM expression in AZC-treated Y79 cells was silenced using synthetic anti-Ep-CAM short interference RNA, and whole genome microarray was performed to determine the gene expression changes post Ep-CAM knockdown. Ep-CAM inhibition was confirmed by Q-RT-PCR, western blotting, and immunofluorescence.

Results: Ep-CAM expression was significantly restored in Y79 cells on day 5 of AZC treatment. Ep-CAM inhibition significantly affected Y79 cell proliferation. We identified 465 upregulated genes (>or=1.0 fold) and 205 downregulated genes (
Conclusions: Ep-CAM silencing significantly decreases Y79 cell proliferation and revealed a wide network of deregulated pathways in vitro. Future studies targeting Ep-CAM gene expression in vivo will help to delineate the mechanisms associated with Ep-CAM gene function in neoplastic transformation and define the potential for Ep-CAM-based molecular intervention in retinoblastoma patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2866575PMC

Publication Analysis

Top Keywords

y79 cells
12
ep-cam
9
knockdown ep-cam
8
ep-cam retinoblastoma
8
y79 cell
8
short interference
8
interference rna
8
ep-cam expression
8
ep-cam inhibition
8
y79
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!