The integrity of DNA is constantly challenged throughout the life of a cell by both endogenous and exogenous stresses. A well-organized rapid damage response and proficient DNA repair, therefore, become critically important for maintaining genomic stability and cell survival. When DNA is damaged, the DNA damage response (DDR) can be initiated by alterations in chromosomal structure and histone modifications, such as the phosphorylation of the histone H2AX (the phosphorylated form is referred to as gamma-H2AX). gamma-H2AX plays a crucial role in recruiting DDR factors to damage sites for accurate DNA repair. On repair completion, gamma-H2AX must then be reverted to H2AX by dephosphorylation for attenuation of the DDR. Here, we report that the wild-type p53-induced phosphatase 1 (Wip1) phosphatase, which is often overexpressed in a variety of tumors, effectively dephosphorylates gamma-H2AX in vitro and in vivo. Ectopic expression of Wip1 significantly reduces the level of gamma-H2AX after ionizing as well as UV radiation. Forced premature dephosphorylation of gamma-H2AX by Wip1 disrupts recruitment of important DNA repair factors to damaged sites and delays DNA damage repair. Additionally, deletion of Wip1 enhances gamma-H2AX levels in cells undergoing constitutive oncogenic stress. Taken together, our studies show that Wip1 is an important mammalian phosphatase for gamma-H2AX and shows an additional mechanism for Wip1 in the tumor surveillance network.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2904079PMC
http://dx.doi.org/10.1158/0008-5472.CAN-09-4244DOI Listing

Publication Analysis

Top Keywords

dna damage
12
damage response
12
dna repair
12
gamma-h2ax
9
dephosphorylates gamma-h2ax
8
dna
8
wip1
7
damage
5
repair
5
wip1 directly
4

Similar Publications

The LIM-domain-only protein LMO2 and its binding partner LDB1 are differentially required for class switch recombination.

Proc Natl Acad Sci U S A

January 2025

Department of Immunology and Microbiology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510000, China.

The LIM-domain-only protein LMO2 interacts with LDB1 in context-dependent multiprotein complexes and plays key roles in erythropoiesis and T cell leukemogenesis, but whether they have any roles in B cells is unclear. Through a CRISPR/Cas9-based loss-of-function screening, we identified LMO2 and LDB1 as factors for class switch recombination (CSR) in murine B cells. LMO2 contributes to CSR at least in part by promoting end joining of DNA double-strand breaks (DSBs) and inhibiting end resection.

View Article and Find Full Text PDF

Background: The effects of ionizing radiation (IR) involve a highly orchestrated series of events in cells, including DNA damage and repair, cell death, and changes in the level of proliferation associated with the stage of the cell cycle. A large number of existing studies in literature have examined the activity of genes and their regulators in mammalian cells in response to high doses of ionizing radiation. Although there are many studies, the research in effect of low doses of ionizing radiation remains limited.

View Article and Find Full Text PDF

Breast cancer represents the primary cause of death of women under 65 in developed countries, due to the acquisition of multiple drug resistance mechanisms. The PI3K/AKT pathway is one of the major regulating mechanisms altered during the development of endocrine resistance and inhibition of steps in this signalling pathway are adopted as a key strategy to overcome this issue. ADP-ribosylation is a post-translational modification catalysed by PARP enzymes that regulates essential cellular processes, often altered in diseases.

View Article and Find Full Text PDF

Mobile genetic elements help drive horizontal gene transfer and bacterial evolution. Conjugative elements and temperate bacteriophages can be stably maintained in host cells. They can alter host physiology and regulatory responses and typically carry genes that are beneficial to their hosts.

View Article and Find Full Text PDF

DNA Damage-Induced Ferroptosis: A Boolean Model Regulating p53 and Non-Coding RNAs in Drug Resistance.

Proteomes

January 2025

Instituto de Matemática e Estatística, Departamento de Ciência da Computação, Universidade de São Paulo, Rua do Matão 1010, São Paulo 05508-090, SP, Brazil.

The tumor suppressor p53, in its wild-type form, plays a central role in cellular homeostasis by regulating senescence, apoptosis, and autophagy within the DNA damage response (DDR). Recent findings suggest that wild-type p53 also governs ferroptosis, an iron-dependent cell death process driven by lipid peroxidation. Post-translational modifications of p53 generate proteoforms that significantly enhance its functional diversity in regulating these mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!