Dominant frequency analysis (DFA) and organization analysis (OA) of cardiac electrograms (EGMs) aims to establish clinical targets for cardiac arrhythmia ablation. However, these previous spectral descriptions of the EGM have often discarded relevant information in the spectrum, such as the harmonic structure or the spectral envelope. We propose a fully automated algorithm for estimating the spectral features in EGM recordings. This approach, called Fourier OA (FOA), accounts jointly for the organization and periodicity in the EGM, in terms of the fundamental frequency instead of dominant frequency. In order to compare the performance of FOA and DFA-OA approaches, we analyzed simulated EGM, obtained in a computer model, as well as two databases of implantable defibrillator-stored EGM. FOA parameters improved the organization measurements with respect to OA, and averaged cycle length and regularity indexes were more accurate when related to the fundamental (instead of dominant) frequency, as estimated by the algorithm (p < 0.05 comparing f(0) estimated by DFA and by FOA). FOA yields a more detailed and robust spectral description of EGM compared to DFA and OA parameters.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TBME.2010.2049574DOI Listing

Publication Analysis

Top Keywords

dominant frequency
12
fundamental frequency
8
cardiac electrograms
8
organization analysis
8
egm
6
foa
5
frequency regularity
4
regularity cardiac
4
electrograms fourier
4
organization
4

Similar Publications

Background: Sweetpotato is a vegetatively propagated crop cultivated worldwide, predominantly in developing countries, valued for its adaptability, short growth cycle, and high productivity per unit land area. In most sub-Saharan African (SSA) countries, it is widely grown by smallholder farmers. Niger, Nigeria, and Benin have a huge diversity of sweetpotato accessions whose potential has not fully been explored to date.

View Article and Find Full Text PDF

Description of changes in chemical bonding along the pathways of chemical reactions by deformation of the molecular electrostatic potential.

J Mol Model

January 2025

Department of Theoretical Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland.

Context: The analysis of the changes in the electronic structure along intrinsic reaction coordinate (IRC) paths for model reactions: (i) ethylene + butadiene cycloaddition, (ii) prototype SN2 reaction Cl + CH3Cl, (iii) HCN/CNH isomerization assisted by water, (iv) CO + HF → C(O)HF was performed, in terms of changes in the deformation density (Δr) and the deformation of MEP (ΔMEP). The main goal was to further examine the utility of the ΔMEP as a descriptor of chemical bonding, and to compare the pictures resulting from Δr and ΔMEP. Both approaches clearly show that the main changes in the electronic structure occur in the TS region.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Makerere University, Kampala, Uganda.

Background: Apolipoprotein E (APOE) gene has three common alleles: ԑ2, ԑ3, and ԑ4, which influence Alzheimer's disease (AD) risk. APOE ԑ4 allele increases AD risk, while APOE ԑ2 allele may protect against AD. This study aimed to examine the distribution and prevalence of APOE genotypes and their association with AD in older Ugandans.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is the most common form of dementia. Neuropathologically, AD stands out as a mixed proteinopathy. Beta-amyloid and tau biomarkers can now add in-vivo support to the AD diagnosis.

View Article and Find Full Text PDF

Background: Neuropsychiatric symptoms (NPS) are common in patients who develop dementia before the age of 65 years, defined as early-onset dementia (EoD). NPS are a major source of morbidity and caregiver distress in patients living with EoD. The prevalence, severity and types of NPS in different populations are unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!