Background: The transforming growth factor-beta (TGF-beta) family constitutes of dimeric proteins that regulate the growth, differentiation and metabolism of many cell types, including that of skeletal muscle in mammals. The potential role of TGF-betas in fish muscle growth is not known.

Results: Here we report the molecular characterization, developmental and tissue expression and regulation by nutritional state of a novel TGF-beta gene from a marine fish, the gilthead sea bream Sparus aurata. S. aurata TGF-beta6 is encoded by seven exons 361, 164, 133, 111, 181, 154, and 156 bp in length and is translated into a 420-amino acid peptide. The exons are separated by six introns: >643, 415, 93, 1250, 425 and >287 bp in length. Although the gene organization is most similar to mouse and chicken TGF-beta2, the deduced amino acid sequence represents a novel TGF-beta that is unique to fish that we have named TGF-beta6. The molecule has conserved putative functional residues, including a cleavage motif (RXXR) and nine cysteine residues that are characteristic of TGF-beta. Semi-quantitative analysis of TGF-beta6 expression revealed differential expression in various tissues of adult fish with high levels in skin and muscle, very low levels in liver, and moderate levels in other tissues including brain, eye and pituitary. TGF-beta6 is expressed in larvae on day of hatching and increases as development progresses. A fasting period of five days of juvenile fish resulted in increased levels of TGF-beta6 expression in white skeletal muscle compared to that in fed fish, which was slightly attenuated by one injection of growth hormone.

Conclusion: Our findings provide valuable insights about genomic information and nutritional regulation of TGF-beta6 which will aid the further investigation of the S. aurata TGF-beta6 gene in association with muscle growth. The finding of a novel TGF-beta6 molecule, unique to fish, will contribute to the understanding of the evolution of the TGF-beta family of cytokines in vertebrates.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2881917PMC
http://dx.doi.org/10.1186/1471-2199-11-37DOI Listing

Publication Analysis

Top Keywords

skeletal muscle
12
tgf-beta6
9
transforming growth
8
growth factor-beta
8
tgf-beta6 gene
8
fish
8
nutritional state
8
tgf-beta family
8
muscle growth
8
novel tgf-beta
8

Similar Publications

Aerobic exercise (AE) is associated with a significant hypoglycemia risk in individuals with type 1 diabetes mellitus (T1DM). However, the mechanisms in the liver and skeletal muscle governing exercise-induced hypoglycemia in T1DM are poorly understood. This study examined the effects of a 60-minute bout of AE on hepatic and muscle glucose metabolism in T1DM rats.

View Article and Find Full Text PDF

Background: Iliopsoas injuries are a common cause of anterior hip and groin pain and can be successfully managed with conservative treatment. Corticosteroid and local anesthetic injections can also be offered in conjunction with nonoperative management. Given the variability in reported injection guidelines, composition, and techniques, the purpose of this study was to systematically review the literature to assess progression to surgery and patient outcomes following iliopsoas injections.

View Article and Find Full Text PDF

Despite the advances in bionic reconstruction of missing limbs, the control of robotic limbs is still limited and, in most cases, not felt to be as natural by users. In this study, we introduce a control approach that combines robotic design based on postural synergies and neural decoding of synergistic behavior of spinal motoneurons. We developed a soft prosthetic hand with two degrees of actuation that realizes postures in a two-dimensional linear manifold generated by two postural synergies.

View Article and Find Full Text PDF

For trained individuals such as athletes and musicians, learning often plateaus after extensive training, known as the "ceiling effect." One bottleneck to overcome it is having no prior physical experience with the skill to be learned. Here, we challenge this issue by exposing expert pianists to fast and complex finger movements that cannot be performed voluntarily, using a hand exoskeleton robot that can move individual fingers quickly and independently.

View Article and Find Full Text PDF

The prevalence of childhood obesity is increasing worldwide, along with the associated common comorbidities of type 2 diabetes and cardiovascular disease in later life. Motivated by evidence for a strong genetic component, our prior genome-wide association study (GWAS) efforts for childhood obesity revealed 19 independent signals for the trait; however, the mechanism of action of these loci remains to be elucidated. To molecularly characterize these childhood obesity loci, we sought to determine the underlying causal variants and the corresponding effector genes within diverse cellular contexts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!