Background: Sequence alignment is one of the most important techniques to analyze biological systems. It is also true that the alignment is not complete and we have to develop it to look for more accurate method. In particular, an alignment for homologous sequences with low sequence similarity is not in satisfactory level. Usual methods for aligning protein sequences in recent years use a measure empirically determined. As an example, a measure is usually defined by a combination of two quantities (1) and (2) below: (1) the sum of substitutions between two residue segments, (2) the sum of gap penalties in insertion/deletion region. Such a measure is determined on the assumption that there is no an intersite correlation on the sequences. In this paper, we improve the alignment by taking the correlation of consecutive residues.

Results: We introduced a new method of alignment, called MTRAP by introducing a metric defined on compound systems of two sequences. In the benchmark tests by PREFAB 4.0 and HOMSTRAD, our pairwise alignment method gives higher accuracy than other methods such as ClustalW2, TCoffee, MAFFT. Especially for the sequences with sequence identity less than 15%, our method improves the alignment accuracy significantly. Moreover, we also showed that our algorithm works well together with a consistency-based progressive multiple alignment by modifying the TCoffee to use our measure.

Conclusions: We indicated that our method leads to a significant increase in alignment accuracy compared with other methods. Our improvement is especially clear in low identity range of sequences. The source code is available at our web page, whose address is found in the section "Availability and requirements".

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2875243PMC
http://dx.doi.org/10.1186/1471-2105-11-235DOI Listing

Publication Analysis

Top Keywords

alignment
10
sequence alignment
8
method alignment
8
alignment accuracy
8
sequences
6
method
5
mtrap pairwise
4
sequence
4
pairwise sequence
4
alignment algorithm
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!