The channel formed by colicin A in planar lipid bilayers has an outsized selectivity for protons compared to any other ion, even though it allows large ions, such as tetraethylammonium, to permeate readily. A mechanism to account for this discrepancy remains obscure. We considered that protons may traverse a separate pathway but were unable to find any evidence for one. Manipulations that interfere with ionic conduction, such as replacing some of the water in the pore with a nonelectrolyte, reduce the proton current along with the ionic current. Lipids have been proposed to play a structural role in the channel, but we found that the proton selectivity was unaffected by various gross changes in the lipid composition of the bilayer, effectively ruling out any specific effect of lipids in the selectivity and offering no support for their role in structure. The 10-helix channel-forming domains of colicins Ia and E1 are structurally homologous to that of colicin A but do not select so remarkably for protons; thus we were able to use them to probe for the regions responsible for the high selectivity. Using hybrids made by helix swapping among these proteins, we found that the anomalous selectivity could be localized to the five C-terminal helices of colicin A.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi100122g | DOI Listing |
PLoS One
January 2025
Laboratory of Functional Genomics and Proteomics, Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh.
The cation-proton antiporter (CPA) superfamily plays pivotal roles in regulating cellular ion and pH homeostasis in plants. To date, the regulatory functions of CPA family members in rice (Oryza sativa L.) have not been elucidated.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Institute of Chemistry Chinese Academy of Sciences, Institute of chemistry, Beiyijie number 2, Zhongguancun, 100190, Beijing, CHINA.
Electrocatalytic nitrate reduction reaction (NO3RR) in alkaline electrolyte presents a sustainable pathway for energy storage and green ammonia (NH3) synthesis. However, it remains challenging to obtain high activity and selectivity due to the limited protonation and/or desorption processes of key intermediates. Herein, we propose a strategy to regulate the acid hardness nature of Cu catalyst by introducing appropriate modifier.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
Under conditions that are close to the real cellular environment, the human telomeric single-stranded overhang (∼200 nt) consisting of tens of TTAGGG repeats tends to form higher order structures of multiple G-quadruplex (G4) blocks. On account of the higher biological relevance of higher order G4 structures, ligand compounds binding to higher order G4 are significant for the drug design toward inhibiting telomerase activity. Here, we study the interaction between a cationic porphyrin derivative, 5,10,15,20-tetra{4-[2-(1-methyl-1-piperidinyl)propoxy]phenyl}porphyrin (T4), and a human telomeric G4-dimer (AG(TAG)) in the mimic intracellular molecularly crowded environment (PEG as a crowding agent) and K or Na solution (i.
View Article and Find Full Text PDFClin Oncol (R Coll Radiol)
January 2025
Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Department of Radiotherapy Physics & Technology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
Aims: To assess the robustness of 4D-optimised IMPT and PAT plans against interplay effects in non-small cell lung cancer (NSCLC) patients with respiratory motion over 10 mm, and to provide insights into the use of proton-based stereotactic body radiotherapy (SBRT) for lung cancer with significant tumour movement.
Materials And Methods: Fourteen patients with early-stage NSCLC and tumour motion >10 mm were selected. Three hypofraction regimens were generated using 4D robust optimisation with the IMPT and PAT techniques.
Mikrochim Acta
January 2025
Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, College of Optoelectronic Materials and Technology, Jianghan University, Wuhan, 430056, China.
An electrochemical sensor is presented for the detection of the chloramphenicol (CAP) based on a bimetallic MIL-101(Fe/Co) MOF electrocatalyst. The MIL-101(Fe/Co) was prepared by utilizing mixed-valence Fe (III) and Co (II) as metal nodes and terephthalic acid as ligands with a simple hydrothermal method and characterized by SEM, TEM, XRD, FTIR, and XPS. Electrochemical measurements such as electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and differential pulse voltammetry (DPV) showed that bimetallic MIL-101(Fe/Co) had the faster electron transfer, larger electroactive area, and higher electrocatalytic activity compared with their monometallic counterparts due to the strong synergistic effect between bimetals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!