GDF-9 promotes the growth of prostate cancer cells by protecting them from apoptosis.

J Cell Physiol

Metastasis & Angiogenesis Research Group, Department of Surgery, Cardiff University School of Medicine, Cardiff, UK.

Published: November 2010

Bone morphogenetic proteins (BMPs) have long been implicated in the process of prostate cancer progression and bone metastasis. This current study investigates the role of GDF-9, a BMP member, in prostate cancer. GDF-9 was over-expressed in PC-3 cells using a mammalian expression construct. Additionally, GDF-9 ribozyme transgenes were generated in order to knock down the expression of GDF-9 in PC-3 and DU-145 cells. These cells were then used in in vitro growth assays in order to determine the effect of GDF-9 on prostate cancer cell growth. Recombinant GDF-9 was also generated and used to treat both cell lines before carrying out further growth assays. Levels of apoptosis were subsequently analyzed using flow cytometry. Cell growth was significantly increased in the GDF-9 over-expressing cells compared to the two controls. The cell growth rate at day 5 was significantly greater in the PC-3(GDF-9exp.) (1,131.1 +/- 79.1%) compared to both PC-3(WT) (563.9 +/- 90.6%) and PC-3(pEF) (763.3 +/- 82.0%), P

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcp.22235DOI Listing

Publication Analysis

Top Keywords

prostate cancer
16
cell growth
12
gdf-9
8
growth assays
8
growth
6
cells
5
gdf-9 promotes
4
promotes growth
4
prostate
4
growth prostate
4

Similar Publications

Understanding the molecular mechanism of inhibitor binding to prostate-specific membrane antigen (PSMA) is of fundamental importance for designing targeted drugs for prostate cancer. Here we designed a series of PSMA-targeting inhibitors with distinct molecular structures, which were synthesized and characterized using both experimental and computational approaches. Microsecond molecular dynamics simulations revealed the structural and thermodynamic details of PSMA-inhibitor interactions.

View Article and Find Full Text PDF

Background: In clinical practice, several radiopharmaceuticals are used for PSMA-PET imaging, each with distinct biodistribution patterns. This may impact treatment decisions and outcomes, as eligibility for PSMA-directed radioligand therapy is usually assessed by comparing tumoral uptake to normal liver uptake as a reference. In this study, we aimed to compare tracer uptake intraindividually in various reference regions including liver, parotid gland and spleen as well as the respective tumor-to-background ratios (TBR) of different F-labeled PSMA ligands to today's standard radiopharmaceutical Ga-PSMA-11 in a series of patients with biochemical recurrence of prostate cancer who underwent a dual PSMA-PET examination as part of an individualized diagnostic approach.

View Article and Find Full Text PDF

Preclinical evaluation of the potential PARP-imaging probe [carbonyl-C]DPQ.

EJNMMI Radiopharm Chem

January 2025

Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria.

Background: Poly (ADP-ribose) polymerase (PARP) enzymes are crucial for the repair of DNA single-strand breaks and have become key therapeutic targets in homologous recombination-deficient cancers, including prostate cancer. To enable non-invasive monitoring of PARP-1 expression, several PARP-1-targeting positron emission tomography (PET) tracers have been developed. Here, we aimed to preclinically investigate [carbonyl-C]DPQ as an alternative PARP-1 PET tracer as it features a strongly distinct chemotype compared to the frontrunners [F]FluorThanatrace and [F]PARPi.

View Article and Find Full Text PDF

Purpose: Our objective was to identify the dosimetric parameters and prostate volume that most accurately predict the incidence of acute and late gastrointestinal (GI) and genitourinary (GU) toxicity in prostate cancer stereotactic ablative radiotherapy (SABR) treatments.

Methods: We conducted a retrospective analysis of 122 patients who received SABR for prostate cancer at our clinic between March 2018 and September 2022 using a five-fraction SABR regimen. The existing plans of these patients were re-evaluated according to our institutional protocols (Hacettepe University [HU-1] and HU-2) as well as PACE‑B, RTOG 0938, and NRG GU005 dose-volume constraints.

View Article and Find Full Text PDF

Background: This study aims to evaluate the capabilities and limitations of large language models (LLMs) for providing patient education for men undergoing radiotherapy for localized prostate cancer, incorporating assessments from both clinicians and patients.

Methods: Six questions about definitive radiotherapy for prostate cancer were designed based on common patient inquiries. These questions were presented to different LLMs [ChatGPT‑4, ChatGPT-4o (both OpenAI Inc.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!