Although most signaling responses initiated by tumor necrosis factor-alpha (TNF-alpha) occur in a Ca(2+)-independent fashion, TNF-alpha receptor signaling augments Ca(2+) entry induced by Galpha(q/11) G-protein coupled receptors (GPCRs) in endothelial cells and increases trans-endothelial permeability. The signaling events involved in GPCR-induced Ca(2+) influx have been characterized and involve store-operated Ca(2+) entry facilitated by the Ca(2+) permeable ion channel, transient receptor potential canonical 4 (TRPC4). Little is known about the mechanisms by which TNF-alpha receptor signaling augments GPCR-induced Ca(2+) entry. TNF-alpha Receptor Ubiquitous Signaling and Scaffolding protein (TRUSS) is a tumor necrosis factor receptor-1 (TNF-R1)-associated protein whose gene name is TRPC4-associated protein (TRPC4AP). The goal of our study was to test the hypothesis that TRUSS serves to link TNF-R1 and GPCR-signaling pathways at the level of TRPC4 by: (i) determining if TRUSS and TNF-R1 interact with TRPC4, and (ii) investigating the role of TRUSS, TNF-R1, and TRPC4 in GPCR-induced Ca(2+) signaling. Here, we show that TRUSS and TNF-R1 interact with a sub-family of TRPC channels (TRPC1, 4, and 5). In addition, we show that TRUSS and TNF-R1 function together with TRPC4 to elevate endoplasmic reticulum Ca(2+) filling in the context of reduced endoplasmic reticulum Ca(2+) storage initiated by G-protein coupled m1 muscarinic acetylcholine receptor (m1AchR) signaling. Together, these findings suggest that TNF-R1, TRUSS, and TRPC4 augment Ca(2+) loading of endoplasmic reticulum Ca(2+) stores in the context of m1AchR stimulation and provide new insights into the mechanisms that connect TNF-R1 to GPCR-induced Ca(2+) signaling.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4447216 | PMC |
http://dx.doi.org/10.1002/jcp.22221 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!