Background: Cell-based technologies for the repair of cartilage defects usually rely on the expansion of low numbers of chondrocytes isolated from biopsies of healthy cartilage. Proliferating chondrocytes are known to undergo dedifferentiation characterized by downregulation of collagen type II and proteoglycan production, and by upregulation of collagen type I synthesis. Re-expression of cartilage specific matrix components by expanded chondrocytes is therefore critical for successful cartilage repair.

Methods: Human articular chondrocytes were expanded on microcarriers Cytodex 3. The growth area was increased by adding empty microcarriers. Added microcarriers were colonized by bead-to-bead transfer of the cells. The chondrocytes were harvested from the microcarriers and characterized by their ability to synthesize collagen type II when cultivated in alginate beads using chondrogenic growth factors. A semi-automatic image analysis technique was developed to determine the fractions of collagen type II and type I positive cells.

Results: The expansion of human articular chondrocytes on microcarriers yielded high cell numbers and propagation rates compared to chondrocytes expanded in flask culture for one passage. The proportion of collagen type II positive cells compared to collagen type I synthesizing cells was increased compared to chondrocytes expanded using conventional methods. The matrix synthesis upon treatment with chondrogenic factors IGF-I and BMP-7 was enhanced whereas TGF-ss had an inhibitory effect on microcarrier expanded chondrocytes.

Conclusions: Expanding human articular chondrocytes on microcarriers omitting subcultivation steps leads to superior ratios of collagen type II to type I forming cells compared to the expansion in conventional monolayer culture.

Download full-text PDF

Source

Publication Analysis

Top Keywords

collagen type
28
human articular
16
articular chondrocytes
16
chondrocytes expanded
12
chondrocytes
10
type
9
cartilage specific
8
specific matrix
8
matrix synthesis
8
image analysis
8

Similar Publications

Objectives: The aim of this systematic review was to assess the effect of DM (Type 1 and Type 2 Diabetes) and hyperglycaemia on the physical and mechanical properties of dentine which is critical for successful endodontic treatment.

Method: An electronic search of the following databases: PubMed, MEDLINE, Web of Science and the grey literature was performed up until July 2024. In vitro and in vivo studies on the effect of DM or hyperglycaemia on the mechanical and physical properties of dentine were included.

View Article and Find Full Text PDF

In the context of bone fractures, the influence of the mechanical environment on the healing outcome is widely accepted, while its influence at the cellular level is still poorly understood. This study explores the influence of mechanical load on naïve mesenchymal stem cell (MSC) differentiation, focusing on hypertrophic chondrocyte differentiation. Unlike primary bone healing, which involves the direct differentiation of MSCs into bone-forming cells, endochondral ossification uses an intermediate cartilage template that remodels into bone.

View Article and Find Full Text PDF

Early increases in bone turnover markers (BTMs) in response to anabolic therapy correlate with 18-month bone mineral density (BMD) increases in postmenopausal women with osteoporosis; however, this relationship has not been assessed in men. In this analysis, the correlation between changes from baseline in fasting intact serum procollagen type I N propeptide (PINP) and serum carboxy-terminal cross-linking telopeptide of type I collagen (CTX) at 1, 3, 6, and 12 months and percent increase from baseline in BMD at 12 months in men from the randomized phase 3 ATOM study (NCT03512262) were evaluated using Pearson's correlation coefficients. The uncoupling index (UI), a measure of the balance between markers of bone formation (PINP) and bone resorption (CTX), with positive UI favoring bone formation, was calculated.

View Article and Find Full Text PDF

Effect of Adipose Stem Cells Injection on Type VII and VIII Collagen Expression of Wistar Rat's Gingiva.

J Contemp Dent Pract

September 2024

Department of Periodontics, Faculty of Dental Medicine, Airlangga University, Surabaya, Indonesia, Phone: +082146474590, e-mail:

Aims: This study investigated the effect of injection of adipose stem cells (ASCs) on the expression of type VII and VIII collagen in Wistar rat's gingiva. Adipose stem cells can modulate the immune system, angiogenesis, wound healing, and extracellular matrix (ECM) remodeling.

Materials And Methods: Ten Wistar rats aged three months were divided into two groups: the treatment group and the control group.

View Article and Find Full Text PDF

Recessive dystrophic epidermolysis bullosa (RDEB) is a genetic disorder due to pathogenic variants in the COL7A1 gene. In this study we determined the association between different categories of COL7A1 variants and clinical disease severity in 236 RDEB patients in North America. Published reports or in-silico predictions were used to assess the impact of pathogenic variants in COL7A1 on type VII collagen (C7) protein function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!