Purpose: Bioresorbable materials have been developed in the hope that the body will replace them with newly formed tissue. The first step of this remodeling process in bone is the bioresorption of the material by osteoclasts. The aim of this study was to analyze osteoclastic resorption of biomaterials in vitro using the commonly used two-dimensional methods of light-microscopy (LM) and scanning electron microscopy (SEM) in comparison with infinite focus microscopy (IFM), a recently developed imaging method allowing for three-dimensional surface analysis.
Methods: Human hematopoietic stem cells were cultivated in the presence of the cytokines M-CSF and RANK-L for 4 weeks directly on dentin and a calcium phosphate cement. Osteoclast development was surveyed with standard techniques. After removal of the cells, resorption was characterized and quantified by LM, SEM and IFM.
Results: Osteoclast cultures on the biomaterials presented the typical osteoclast-specific markers. On dentin samples LM, SEM as well as IFM allowed for discrimination of resorption. Quantification of the resorbed area showed a linear correlation between the results (LM vs. SEM: r=0.996, p=0.004; SEM vs. IFM: r=0.989, p=0.011; IFM vs. LM: r=0.995). It was not possible to demarcate resorption pits on GB14 using LM or SEM. With IFM, resorption on GB14 could be visualized and quantified two- and three-dimensionally.
Conclusions: In this paper we introduce IFM as a technology for three-dimensional visualization and quantification of resorption of biomaterials. Better understanding of the bioresorption of biomaterials may help in the design of better materials and might therefore constitute an important step on the avenue to the development of artificial bone.
Download full-text PDF |
Source |
---|
J Funct Biomater
September 2024
Laboratory of Medical Bioresorption and Bioresistance, Russian University of Medicine, Dolgorukovskaya 4, 127473 Moscow, Russia.
Magnesium alloys are considered as promising materials for use as biodegradable implants due to their biocompatibility and similarity to human bone properties. However, their high corrosion rate in bodily fluids limits their use. To address this issue, amorphization can be used to inhibit microgalvanic corrosion and increase corrosion resistance.
View Article and Find Full Text PDFPLoS One
June 2024
Musculoskeletal Research Unit, Department of Molecular Mechanisms of Disease, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.
Int J Mol Sci
January 2024
Korea Institute of Ceramic Engineering and Technology, Jinju 28160, Republic of Korea.
This study reports the effect of the not-calcining process on the bioresorption and biomineralization of hydroxyapatite through in vitro dissolution assessment. The prepared calcined hydroxyapatite (c-HAp) and uncalcined hydroxyapatite (unc-HAp) have a particle size of 2 μm and 13 μm, surface areas of 4.47 m/g and 108.
View Article and Find Full Text PDFPolymers (Basel)
December 2023
Materials Science and Technology Laboratory, Department of Mechanical and Industrial Engineering, University of Brescia, via Branze 38, 25123 Brescia, Italy.
Scaffolds for tissue engineering are expected to respond to a challenging combination of physical and mechanical requirements, guiding the research towards the development of novel hybrid materials. This study introduces innovative three-dimensional bioresorbable scaffolds, in which a stiff poly(lactic acid) lattice structure is meant to ensure temporary mechanical support, while a bioactive gelatin-chitosan hydrogel is incorporated to provide a better environment for cell adhesion and proliferation. The scaffolds present a core-shell structure, in which the lattice core is realized by additive manufacturing, while the shell is nested throughout the core by grafting and crosslinking a hydrogel forming solution.
View Article and Find Full Text PDFACS Appl Bio Mater
November 2023
A.V. Topchiev Institute of Petrochemical Synthesis, Leninsky pr. 29, Moscow 119991, Russian Federation.
Carbonated hydroxyapatites (CAp) are very close to natural bone apatite in chemical composition and are regarded as a prospective bone mineral substitute for bone surgery and orthopedics. However, until now, the studies and applications of CAp were limited because of the amorphous nature of the synthetic CAp. In the present work, microsized highly crystalline carbonated apatites with uniform hexagonal (hCAp) or platelike (pCAp) morphology have been studied for the first time in vitro and in vivo, comparing against commercial hydroxyapatite (HAp) and β-tricalcuim phosphate (βTCP).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!