Cholinesterase inhibitors ameliorate spatial learning deficits in rats following hypobaric hypoxia.

Exp Brain Res

Neurobiology Division, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Ministry of Defence, Government of India, Lucknow Road, Timarpur, Delhi, 110054, India.

Published: June 2010

Cognitive functions especially learning and memory are severely affected by high altitude (HA) exposure. Hypobaric hypoxia (HBH) encountered at HA is known to cause oxidative stress, alterations of neurotransmitters and cognitive impairment. We hypothesized that alteration in cholinergic system may be involved in HBH-induced learning impairment. The present study has investigated the cholinergic dysfunctions associated with simulated HBH-induced impairment of learning in rats and protective role of acetylcholine esterase inhibitors (AChEIs). Male Sprague-Dawley rats were exposed to HBH equivalent to 6,100 m for 7 days in a simulated decompression chamber. After stipulated period of exposure, learning ability was assessed using Morris water maze (MWM) task. Cholinergic markers like acetylcholine (ACh) and acetyl cholinesterase (AChE) were evaluated from cortex and hippocampus. Morphological changes were evaluated from cortex, CA1, and CA3 region of hippocampus by Nissle staining and by electron microscopy. We found that exposure to HBH led to impairment of learning ability in MWM task, and it was accompanied by decrease in ACh level, increase in AChE activity, and revealed critical cellular damage. Administration of AChEIs like physostigmine (PHY) and galantamine (GAL) resulted in amelioration of the deleterious effects induced by HBH. The AChEIs were also able to restore the neuronal morphology. Our data suggest that cholinergic system is affected by HBH, and AChEIs were able to improve HBH-induced learning impairment in rats.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00221-010-2266-7DOI Listing

Publication Analysis

Top Keywords

hypobaric hypoxia
8
cholinergic system
8
hbh-induced learning
8
learning impairment
8
impairment learning
8
learning ability
8
mwm task
8
evaluated cortex
8
hbh acheis
8
learning
7

Similar Publications

Background: Posttraumatic osteoarthritis (PTOA) is directly associated with early acute articular cartilage injury. Inhibition of cartilage destruction immediately following joint damage can effectively slow or prevent PTOA progression. Therefore, we sought to determine intervention targets and therapeutic strategies in the acute stage of cartilage injury.

View Article and Find Full Text PDF

Effect of age on lung adaptation to high-altitude hypoxia in Tibetan sheep.

Front Vet Sci

December 2024

Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China.

After prolonged adaptation to high-altitude environments, Tibetan sheep have developed a robust capacity to withstand hypobaric hypoxia. Compared to low-altitude sheep, various organs and tissues in Tibetan sheep have undergone significant adaptive remodeling, particularly in the lungs. However, whether lambs and adult Tibetan sheep exhibit similar adaptations to high-altitude hypoxia remains unclear.

View Article and Find Full Text PDF

A stable rat model of high altitude pulmonary edema established by hypobaric hypoxia combined diurnal temperature fluctuation and exercise.

Biochem Biophys Res Commun

December 2024

Department of Pharmacy, The 940th Hospital of Joint Logistics Support Force of PLA, Lanzhou, Gansu, 730050, People's Republic of China; Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China. Electronic address:

Hypobaric hypoxia (HH) is regarded as the main cause of high-altitude pulmonary edema (HAPE), however, the effect of diurnal temperature fluctuation and exercise has been overlooked. The aim of current study was to elucidate the role of diurnal temperature fluctuation and exercise in the development of HAPE and establish a reliable experimental rat model. Male SPF Wistar rats were assigned to control group (1400 m, 25 °C) and five model groups: Model Ⅰ group (6000 m, 25 °C), Model Ⅱ group (6000 m, 2 °C), Model Ⅲ group (6000 m, 12 °C/2 °C light/dark cycle), Model IV group (6000 m, 2 °C, and exercise) and Model V group (6000 m, 12 °C/2 °C light/dark cycle, and exercise).

View Article and Find Full Text PDF

Prolonged exposure to high-altitude environments may increase the risk of cognitive decline in young migrants. Recent studies suggest that hypobaric hypoxia-induced alterations in gut microbial composition could partly contribute to this risk. However, the absence of direct evidence from cohort studies and an unclear mechanism hinder intervention development based on this hypothesis.

View Article and Find Full Text PDF

This study aims to investigate the effect of Zhishi Xiebai Guizhi Decoction on the phenotypic transformation of pulmonary artery smooth muscle cells(PASMCs) in rats with hypoxic pulmonary hypertension(HPH). Healthy SPF SD rats were randomly assigned to five groups: control group, hypoxia model group, hypoxia + low-dose Zhishi Xiebai Guizhi Decoction group(440 mg·kg~(-1)·d~(-1)), hypoxia + high-dose Zhishi Xiebai Guizhi Decoction group(880 mg·kg~(-1)·d~(-1)), and hypoxia + sildenafil group(30 mg·kg~(-1)·d~(-1)), with right rats in each group. Rats in the hypoxia model and hypoxia + drug groups were exposed to a hypobaric oxygen chamber with a simulated altitude of 5 000 m to induce the PH model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!