Axonal degeneration is a pathological hallmark of many traumatic and neurodegenerative neurological disorders. Although the underlying mechanisms remain largely unclear, increased autophagy and the influx of extracellular calcium have been implicated in the pathogenesis of axonal degeneration based on in vitro data. Using in vivo imaging of the rat optic nerve after crush lesion we could now show that both mechanisms are linked and play an important role in acute axonal degeneration in vivo. Our data suggest that crush lesion of the optic nerve induces a rapid calcium influx through calcium channels, which results in a secondary induction of autophagy that participates actively in axonal degradation. Therapeutic manipulation of both events could significantly alter the time course of acute axonal degeneration in vivo and may thus represent promising therapeutic targets for the future.

Download full-text PDF

Source
http://dx.doi.org/10.4161/auto.6.5.12188DOI Listing

Publication Analysis

Top Keywords

axonal degeneration
20
acute axonal
12
degeneration vivo
12
optic nerve
8
crush lesion
8
degeneration
5
axonal
5
vivo
4
vivo attenuated
4
attenuated inhibition
4

Similar Publications

Fucosidosis: A Review of a Rare Disease.

Int J Mol Sci

January 2025

Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Turkey.

Fucosidosis is a rare lysosomal storage disease caused by α-L-fucosidase deficiency following a mutation in the gene. This enzyme is responsible for breaking down fucose-containing glycoproteins, glycolipids, and oligosaccharides within the lysosome. Mutations in result in either reduced enzyme activity or complete loss of function, leading to the accumulation of fucose-rich substrates in lysosomes.

View Article and Find Full Text PDF
Article Synopsis
  • About 20% of familial ALS cases are linked to mutations in the SOD1 gene, and traumatic brain injury (TBI) is identified as a possible risk factor.
  • Researchers studied the effects of repetitive TBI on ALS progression in SOD1 mouse models and the role of Sarm1, a regulator of axonal degeneration.
  • Results showed that TBI worsened ALS symptoms and disease progression, but losing Sarm1 helped improve outcomes and reduced nerve damage, indicating potential for SARM1-targeted treatments.
View Article and Find Full Text PDF

An apparent outbreak of fenugreek forage toxicosis occurred in a beef cattle herd near Moose Jaw, Saskatchewan in February-May 2022. The herd had consumed fenugreek hay from late fall to early winter. Clinical signs included various degrees of weakness, ataxia, knuckling, walking on hocks, and recumbency.

View Article and Find Full Text PDF

This study characterizes a fluorescent -tdTomato neuronal reporter mouse line with strong labeling of axons throughout the optic nerve, of retinal ganglion cell (RGC) soma in the ganglion cell layer (GCL), and of RGC dendrites in the inner plexiform layer (IPL). The model facilitated assessment of RGC loss in models of degeneration and of RGC detection in mixed neural/glial cultures. The tdTomato signal showed strong overlap with >98% cells immunolabeled with RGC markers RBPMS or BRN3A, consistent with the ubiquitous presence of the vesicular glutamate transporter 2 (VGUT2, SLC17A6) in all RGC subtypes.

View Article and Find Full Text PDF

Autonomic Component of Carpal Tunnel Syndrome.

J Hand Surg Am

January 2025

Musculoskeletal Translational Innovation Initiative, Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.

Carpal tunnel syndrome (CTS) is the most common compression neuropathy. The median nerve contains sensory, motor, and sympathetic fibers. Involvement of the different fibers of the median nerve in CTS may vary; hence, one of the sensory, motor, or autonomic dysfunctions may be dominant.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!