Increased expression of metalloprotease-disintegrin ADAM12 is a hallmark of several pathological conditions, including cancer, cardiovascular disease, and certain inflammatory diseases of the central nervous system or the muscoskeletal system. We show that transforming growth factor beta1 (TGFbeta1) is a potent inducer of ADAM12 mRNA and protein in mouse fibroblasts and in mouse and human mammary epithelial cells. Induction of ADAM12 is detected within 2 h of treatment with TGFbeta1, is Smad2/Smad3-dependent, and is a result of derepression of the Adam12 gene. SnoN, a negative regulator of the TGFbeta signaling pathway, is a master regulator of ADAM12 expression in response to TGFbeta1 stimulation. Overexpression of SnoN in NIH3T3 cells reduces the magnitude of ADAM12 induction by TGFbeta1 treatment. Down-regulation of SnoN expression by short hairpin RNA enhances TGFbeta1-induced expression of ADAM12. In a panel of TGFbeta1-responsive cancer cell lines with high expression of SnoN, induction of ADAM12 by TGFbeta1 is significantly impaired, suggesting that the endogenous SnoN plays a role in regulating ADAM12 expression in response to TGFbeta1. Identification of SnoN as a repressor of the ADAM12 gene should contribute to advances in the studies on the role of ADAM12 in tumor progression and in the development of other pathologies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2903403 | PMC |
http://dx.doi.org/10.1074/jbc.M110.133314 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!